Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Support Care Cancer ; 31(6): 343, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37199790

RESUMO

PURPOSE: The aims of this study were to evaluate whether the effects of two therapeutic exercise programs are sustained over time (≥ 5 years) in long-term breast cancer survivors (LTBCS). Second, to determine the influence of the current level of physical activity (PA) performed on cancer-related fatigue (CRF) that these patients may present ≥5 years later. METHODS: A prospective observational study was conducted with a cohort of 80 LTBCS in Granada during 2018. Firstly, considering their participation in one of the programs, they were allocated into two groups: usual care and therapeutic exercise program, to assess CRF, pain and pressure pain sensitivity, muscle strength, functional capacity, and quality of life. Secondly, they were also classified into 3 groups according to current level of weekly PA performed: ≤ 3, 3.1-7.4, and ≥ 7.5 (MET-hour/week) respectively, to assess its impact over CRF. RESULTS: Although the positive effects of the programs are not sustained over time, a trend toward significance can be observed for a greater reduction in overall CRF levels, lower intensity of pain in the affected arm and cervical region, and greater functional capacity and quality of life in the group that underwent therapeutic exercise. Additionally, 66.25% of LTBCS are inactive ≥ 5 years after completion of the program and furthermore, such inactivity is accompanied by higher CRF levels (P .013 to .046). CONCLUSION: The positive effects of therapeutic exercise programs are not maintained over time for LTBCS. Additionally, more than half of these women (66.25%) are inactive ≥ 5 years after completion of the program, this inactivity being accompanied by higher levels of CRF.


Assuntos
Neoplasias da Mama , Sobreviventes de Câncer , Humanos , Feminino , Seguimentos , Qualidade de Vida , Neoplasias da Mama/complicações , Neoplasias da Mama/terapia , Terapia por Exercício , Nível de Saúde , Fadiga/etiologia , Fadiga/terapia , Dor
2.
J Cell Mol Med ; 22(11): 5244-5256, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30133118

RESUMO

Autophagy and exosome secretion play important roles in a variety of physiological and disease states, including the development of age-related macular degeneration. Previous studies have demonstrated that these cellular mechanisms share common pathways of activation. Low oxidative damage in ARPE-19 cells, alters both autophagy and exosome biogenesis. Moreover, oxidative stress modifies the protein and genetic cargo of exosomes, possibly affecting the fate of surrounding cells. In order to understand the connection between these two mechanisms and their impact on angiogenesis, stressed ARPE-19 cells were treated with a siRNA-targeting Atg7, a key protein for the formation of autophagosomes. Subsequently, we observed the formation of multivesicular bodies and the release of exosomes. Released exosomes contained VEGFR2 as part of their cargo. This receptor for VEGF-which is critical for the development of new blood vessels-was higher in exosome populations released from stressed ARPE-19. While stressed exosomes enhanced tube formation, exosomes became ineffective after silencing VEGFR2 in ARPE-19 cells and were, consequently, unable to influence angiogenesis. Moreover, vessel sprouting in the presence of stressed exosomes seems to follow a VEGF-independent pathway. We propose that abnormal vessel growth correlates with VEGFR2-expressing exosomes release from stressed ARPE-19 cells, and is directly linked to autophagy.


Assuntos
Autofagia/genética , Degeneração Macular/genética , Neovascularização Fisiológica/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Autofagossomos/metabolismo , Células Cultivadas , Exossomos/genética , Humanos , Degeneração Macular/patologia , Estresse Oxidativo/genética , Epitélio Pigmentado da Retina/metabolismo
3.
J Cell Mol Med ; 20(8): 1457-66, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26999719

RESUMO

The retinal pigment epithelium (RPE), a monolayer located between the photoreceptors and the choroid, is constantly damaged by oxidative stress, particularly because of reactive oxygen species (ROS). As the RPE, because of its physiological functions, is essential for the survival of the retina, any sustained damage may consequently lead to loss of vision. Exosomes are small membranous vesicles released into the extracellular medium by numerous cell types, including RPE cells. Their cargo includes genetic material and proteins, making these vesicles essential for cell-to-cell communication. Exosomes may fuse with neighbouring cells influencing their fate. It has been observed that RPE cells release higher amounts of exosomes when they are under oxidative stress. Exosomes derived from cultured RPE cells were isolated by ultracentrifugation and quantified by flow cytometry. VEGF receptors (VEGFR) were analysed by both flow cytometry and Western blot. RT-PCR and qPCR were conducted to assess mRNA content of VEGFRs in exosomes. Neovascularization assays were performed after applying RPE exosomes into endothelial cell cultures. Our results showed that stressed RPE cells released a higher amount of exosomes than controls, with a higher expression of VEGFR in the membrane, and enclosed an extra cargo of VEGFR mRNA. Angiogenesis assays confirmed that endothelial cells increased their tube formation capacity when exposed to stressed RPE exosomes.


Assuntos
Exossomos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica , Estresse Oxidativo , Epitélio Pigmentado da Retina/patologia , Linhagem Celular , Etanol/farmacologia , Exossomos/efeitos dos fármacos , Exossomos/ultraestrutura , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Mediators Inflamm ; 2015: 624287, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26063976

RESUMO

Diabetes and alcohol misuse are two of the major challenges in health systems worldwide. These two diseases finally affect several organs and systems including the central nervous system. Hippocampus is one of the most relevant structures due to neurogenesis and memory-related processing among other functions. The present review focuses on the common profile of diabetes and ethanol exposure in terms of oxidative stress and proinflammatory and prosurvival recruiting transcription factors affecting hippocampal neurogenesis. Some aspects around antioxidant strategies are also included. As a global conclusion, the present review points out some common hits on both diseases giving support to the relations between alcohol intake and diabetes.


Assuntos
Alcoolismo/metabolismo , Alcoolismo/fisiopatologia , Inflamação/fisiopatologia , Neurogênese/fisiologia , Estresse Oxidativo/fisiologia , Animais , Humanos , Inflamação/metabolismo
5.
Invest Ophthalmol Vis Sci ; 56(11): 6855-63, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26567798

RESUMO

PURPOSE: Cytochrome p450 2E1 (CYP2E1) is a detoxifying enzyme with particular affinity for ethanol (EtOH) expressed in several tissues. Although CYP2E1 has been identified in human RPE, nothing is known about its metabolic activity. Expression of CYP2E1 and activity after EtOH exposure have been studied in human RPE and ARPE-19 cells. METHODS: Ethanol-induced CYP2E1 mRNA expression was analyzed by RT-PCR and quantitative PCR (qPCR) from human donor RPE as well as from ARPE-19 cells. Expression of CYP2E1 protein was determined by Western blot. Cytoplasmic CYP2E1 location also was demonstrated by immunocytochemistry. Cell viability was studied by the colorimetric assay XTT after EtOH treatment. Diallyl sulfide (DAS) was used to inhibit CYP2E1 activity. The microsomal CYP2E1 activity assay was determined by quantification of 4-nitrocatechol (4NC) formation through HPLC. RESULTS: Relevant CYP2E1 mRNA levels are present in human RPE. Ethanol augmented the formation of reactive oxygen species (ROS) in ARPE-19 cells. Expression of CYP2E1 mRNA, CYP2E1 protein activity, and ROS production were induced by ethanol in a concentration-dependent manner. Interestingly, the treatment with DAS reduced all the aforementioned increased values. The presence of CYP2E1 in both hRPE and ARPE-19 cells reinforces the protective role of the RPE and strongly suggests additional roles for CYP2E1 related to vision.


Assuntos
Citocromo P-450 CYP2E1/metabolismo , Etanol/farmacologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Análise de Variância , Western Blotting , Linhagem Celular , Sobrevivência Celular , Ativação Enzimática/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Estresse Oxidativo/fisiologia , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/enzimologia
6.
Parkinsons Dis ; 2012: 131058, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22966477

RESUMO

We discuss the participation of mitochondrial dynamics and autophagy in the 6-hydroxidopamine-induced Parkinson's disease model. The regulation of dynamic mitochondrial processes such as fusion, fission, and mitophagy has been shown to be an important mechanism controlling cellular fate. An imbalance in mitochondrial dynamics may contribute to both familial and sporadic neurodegenerative diseases including Parkinson's disease. With special attention we address the role of second messengers as the role of reactive oxygen species and the mitochondria as the headquarters of cell death. The role of molecular signaling pathways, for instance, the participation of Dynamin-related protein 1(Drp1), will also be addressed. Furthermore evidence demonstrates the therapeutic potential of small-molecule inhibitors of mitochondrial division in Parkinson's disease. For instance, pharmacological inhibition of Drp1, through treatment with the mitochondrial division inhibitor-1, results in the abrogation of mitochondrial fission and in a decrease of the number of autophagic cells. Deciphering the signaling cascades that underlie mitophagy triggered by 6-OHDA, as well as the mechanisms that determine the selectivity of this response, will help to better understand this process and may have impact on human treatment strategies of Parkinson's disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA