Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(10)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456262

RESUMO

Mitochondria alterations are a classical feature of muscle immobilization, and autophagy is required for the elimination of deficient mitochondria (mitophagy) and the maintenance of muscle mass. We focused on the regulation of mitochondrial quality control during immobilization and remobilization in rat gastrocnemius (GA) and tibialis anterior (TA) muscles, which have very different atrophy and recovery kinetics. We studied mitochondrial biogenesis, dynamic, movement along microtubules, and addressing to autophagy. Our data indicated that mitochondria quality control adapted differently to immobilization and remobilization in GA and TA muscles. Data showed i) a disruption of mitochondria dynamic that occurred earlier in the immobilized TA, ii) an overriding role of mitophagy that involved Parkin-dependent and/or independent processes during immobilization in the GA and during remobilization in the TA, and iii) increased mitochondria biogenesis during remobilization in both muscles. This strongly emphasized the need to consider several muscle groups to study the mechanisms involved in muscle atrophy and their ability to recover, in order to provide broad and/or specific clues for the development of strategies to maintain muscle mass and improve the health and quality of life of patients.


Assuntos
Mitocôndrias Musculares/metabolismo , Mitofagia , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Animais , Masculino , Atividade Motora , Músculo Esquelético/fisiologia , Músculo Esquelético/fisiopatologia , Ratos , Ratos Wistar , Restrição Física/efeitos adversos
2.
BMC Genomics ; 15: 1165, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25532418

RESUMO

BACKGROUND: Muscle ageing contributes to both loss of functional autonomy and increased morbidity. Muscle atrophy accelerates after 50 years of age, but the mechanisms involved are complex and likely result from the alteration of a variety of interrelated functions. In order to better understand the molecular mechanisms underlying muscle chronological ageing in human, we have undertaken a top-down differential proteomic approach to identify novel biomarkers after the fifth decade of age. RESULTS: Muscle samples were compared between adult (56 years) and old (78 years) post-menopausal women. In addition to total muscle extracts, low-ionic strength extracts were investigated to remove high abundance myofibrillar proteins and improve the detection of low abundance proteins. Two-dimensional gel electrophoreses with overlapping IPGs were used to improve the separation of muscle proteins. Overall, 1919 protein spots were matched between all individuals, 95 were differentially expressed and identified by mass spectrometry, and they corresponded to 67 different proteins. Our results suggested important modifications in cytosolic, mitochondrial and lipid energy metabolism, which may relate to dysfunctions in old muscle force generation. A fraction of the differentially expressed proteins were linked to the sarcomere and cytoskeleton (myosin light-chains, troponin T, ankyrin repeat domain-containing protein-2, vinculin, four and a half LIM domain protein-3), which may account for alterations in contractile properties. In line with muscle contraction, we also identified proteins related to calcium signal transduction (calsequestrin-1, sarcalumenin, myozenin-1, annexins). Muscle ageing was further characterized by the differential regulation of several proteins implicated in cytoprotection (catalase, peroxiredoxins), ion homeostasis (carbonic anhydrases, selenium-binding protein 1) and detoxification (aldo-keto reductases, aldehyde dehydrogenases). Notably, many of the differentially expressed proteins were central for proteostasis, including heat shock proteins and proteins involved in proteolysis (valosin-containing protein, proteasome subunit beta type-4, mitochondrial elongation factor-Tu). CONCLUSIONS: This study describes the most extensive proteomic analysis of muscle ageing in humans, and identified 34 new potential biomarkers. None of them were previously recognized as differentially expressed in old muscles, and each may represent a novel starting point to elucidate the mechanisms of muscle chronological ageing in humans.


Assuntos
Envelhecimento/metabolismo , Músculos/metabolismo , Pós-Menopausa/fisiologia , Proteômica , Idoso , Biomarcadores/metabolismo , Proteínas Sanguíneas/metabolismo , Citoplasma/metabolismo , Proteínas do Citoesqueleto/metabolismo , Citotoxinas/metabolismo , Metabolismo Energético , Feminino , Humanos , Metabolismo dos Lipídeos , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Músculos/citologia , Músculos/fisiologia , Estresse Oxidativo , Pós-Menopausa/metabolismo , Proteólise , Sarcômeros/metabolismo , Sarcopenia/metabolismo , Transdução de Sinais , Transcriptoma
3.
Cell Metab ; 6(6): 425-7, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18054311

RESUMO

FoxO3 regulates the transcription of critical components of the ubiquitin-proteasome system in muscle wasting. Two reports (Mammucari et al., 2007; Zhao et al., 2007) now implicate FoxO3 in the transcription of autophagy-related genes and provide the first direct evidence for a coordinated role of autophagy in muscle atrophy.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Músculo Esquelético/metabolismo , Peptídeo Hidrolases/metabolismo , Animais , Autofagia/genética , Autofagia/fisiologia , Proteína Forkhead Box O3 , Humanos , Modelos Biológicos , Atrofia Muscular/etiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Transcrição Gênica , Ubiquitina/metabolismo
4.
Am J Physiol Endocrinol Metab ; 303(11): E1335-47, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23032683

RESUMO

Sustained muscle wasting due to immobilization leads to weakening and severe metabolic consequences. The mechanisms responsible for muscle recovery after immobilization are poorly defined. Muscle atrophy induced by immobilization worsened in the lengthened tibialis anterior (TA) muscle but not in the shortened gastrocnemius muscle. Here, we investigated some mechanisms responsible for this differential response. Adult rats were subjected to unilateral hindlimb casting for 8 days (I8). Casts were removed at I8, and animals were allowed to recover for 10 days (R1 to R10). The worsening of TA atrophy following immobilization occurred immediately after cast removal at R1 and was sustained until R10. This atrophy correlated with a decrease in type IIb myosin heavy chain (MyHC) isoform and an increase in type IIx, IIa, and I isoforms, with muscle connective tissue thickening, and with increased collagen (Col) I mRNA levels. Increased Col XII, Col IV, and Col XVIII mRNA levels during TA immobilization normalized at R6. Sustained enhanced peptidase activities of the proteasome and apoptosome activity contributed to the catabolic response during the studied recovery period. Finally, increased nuclear apoptosis prevailed only in the connective tissue compartment of the TA. Altogether, the worsening of the TA atrophy pending immediate reloading reflects a major remodeling of its fiber type properties and alterations in the structure/composition of the extracellular compartment that may influence its elasticity/stiffness. The data suggest that sustained enhanced ubiquitin-proteasome-dependent proteolysis and apoptosis are important for these adaptations and provide some rationale for explaining the atrophy of reloaded muscles pending immobilization in a lengthened position.


Assuntos
Apoptose/fisiologia , Colágeno/metabolismo , Imobilização/efeitos adversos , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Animais , Colágeno/classificação , Colágeno/genética , Células do Tecido Conjuntivo , Masculino , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Cadeias Pesadas de Miosina/classificação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , RNA Mensageiro/análise , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/fisiologia , Fatores de Tempo , Ubiquitina/metabolismo
5.
FASEB J ; 25(11): 3790-802, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21764995

RESUMO

Muscle atrophy prevails in numerous diseases (cancer cachexia, renal failure, infections, etc.), mainly results from elevated proteolysis, and is accelerated by bed rest. This largely contributes to increased health costs. Devising new strategies to prevent muscle wasting is a major clinical challenge. The ubiquitin proteasome system (UPS) degrades myofibrillar proteins, but the precise mechanisms responsible for actin breakdown are surprisingly poorly characterized. We report that chimeric flag-actin was destabilized and polyubiquitinylated in stably transfected C2C12 myotubes treated with the catabolic agent dexamethasone (1 µM) and that only proteasome inhibitors blocked its breakdown. Actin polyubiquitinylation was also detected in wild-type C2C12 myotubes and human muscle biopsies from control participants and patients with cancer. The muscle-specific E3 ubiquitin ligase MuRF1 is up-regulated in catabolic conditions and polyubiquitinylates components of the thick filament. We also demonstrate that recombinant GST-MuRF1 physically interacted and polyubiquitinylated actin in vitro and that MuRF1 is a critical component for actin breakdown, since MuRF1 siRNA stabilized flag-actin. These data identify unambiguously the abundant contractile protein actin as a target of the UPS in skeletal muscle both in vitro and in vivo, further supporting the need for new strategies blocking specifically the activation of this pathway in muscle wasting conditions.


Assuntos
Actinas/metabolismo , Proteínas Musculares/metabolismo , Miofibrilas/metabolismo , Poliubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular , Dexametasona/farmacologia , Humanos , Leupeptinas/farmacologia , Camundongos , Músculos/metabolismo , Oligopeptídeos , Peptídeos/química , Peptídeos/metabolismo , Inibidores de Proteassoma , RNA Interferente Pequeno/farmacologia , Ratos , Proteínas com Motivo Tripartido
6.
J Physiol ; 589(Pt 3): 511-24, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21115641

RESUMO

Immobilization periods increase with age because of decreased mobility and/or because of increased pathological episodes that require bed-rest. Then, sarcopaenia might be partially explained by an impaired recovery of skeletal muscle mass after a catabolic state due to an imbalance of muscle protein metabolism, apoptosis and cellular regeneration. Mechanisms involved during muscle recovery have been little studied and in elderly they remain almost unknown. We show, in rats, that a short immobilization period during ageing initiated muscle atrophy that was indeed not recovered after 40 days. Immobilization was associated with an activation of both the ubiquitin-proteasome and the mitochondria-associated apoptotic pathways and the inflammatory and redox processes, and a decrease of cellular regeneration. We show that the lack of muscle recovery during ageing is not due to a defect in proteolysis or apoptosis down-regulation. These observations lead us to hypothesize that muscle protein synthesis activation after immobilization was altered during ageing.


Assuntos
Envelhecimento/fisiologia , Apoptose/fisiologia , Caspases/metabolismo , Elevação dos Membros Posteriores/efeitos adversos , Músculo Esquelético/fisiologia , Poliubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Regeneração/fisiologia , Animais , Proteínas Reguladoras de Apoptose , Peso Corporal/fisiologia , Proteínas de Transporte/metabolismo , Quimiocina CCL2/metabolismo , Ingestão de Alimentos/fisiologia , Glutationa/metabolismo , Inflamação/metabolismo , Masculino , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Fator Regulador Miogênico 5/metabolismo , Estresse Oxidativo/fisiologia , Carbonilação Proteica/fisiologia , Ratos , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
9.
Curr Opin Clin Nutr Metab Care ; 12(1): 37-41, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19057185

RESUMO

PURPOSE OF REVIEW: To understand age-related changes in proteolysis and apoptosis in skeletal muscle in relation to oxidative stress and mitochondrial alterations. RECENT FINDINGS: During aging, a progressive loss of muscle mass (sarcopenia) has been described in both human and rodents. Sarcopenia is attributable to an imbalance between protein synthesis and degradation or between apoptosis and regeneration processes or both. Major age-dependent alterations in muscle proteolysis are a lack of responsiveness of the ubiquitin-proteasome-dependent proteolytic pathway to anabolic and catabolic stimuli and alterations in the regulation of autophagy. In addition, increased oxidative stress leads to the accumulation of damaged proteins, which are not properly eliminated, aggregate, and in turn impair proteolytic activities. Finally, the mitochondria-associated apoptotic pathway may be activated. These age-induced changes may contribute to sarcopenia and decreased ability of old individuals to recover from stress. SUMMARY: Alterations in proteasome-dependent or lysosomal proteolysis, increased oxidative stress, mitochondrial dysfunction, and apoptosis presumably contribute to the development of sarcopenia.


Assuntos
Envelhecimento/fisiologia , Apoptose/fisiologia , Mitocôndrias/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Idoso , Animais , Cálcio/metabolismo , Humanos , Hidrólise , Lisossomos/metabolismo , Redes e Vias Metabólicas , Estresse Oxidativo/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo
10.
J Cachexia Sarcopenia Muscle ; 10(2): 323-337, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30697967

RESUMO

BACKGROUND: Loss of muscle mass worsens many diseases such as cancer and renal failure, contributes to the frailty syndrome, and is associated with an increased risk of death. Studies conducted on animal models have revealed the preponderant role of muscle proteolysis and in particular the activation of the ubiquitin proteasome system (UPS). Studies conducted in humans remain scarce, especially within renal deficiency. Whether a shared atrophying programme exists independently of the nature of the disease remains to be established. The aim of this work was to identify common modifications at the transcriptomic level or the proteomic level in atrophying skeletal muscles from cancer and renal failure patients. METHODS: Muscle biopsies were performed during scheduled interventions in early-stage (no treatment and no detectable muscle loss) lung cancer (LC), chronic haemodialysis (HD), or healthy (CT) patients (n = 7 per group; 86% male; 69.6 ± 11.4, 67.9 ± 8.6, and 70.2 ± 7.9 years P > 0.9 for the CT, LC, and HD groups, respectively). Gene expression of members of the UPS, autophagy, and apoptotic systems was measured by quantitative real-time PCR. A global analysis of the soluble muscle proteome was conducted by shotgun proteomics for investigating the processes altered. RESULTS: We found an increased expression of several UPS and autophagy-related enzymes in both LC and HD patients. The E3 ligases MuRF1 (+56 to 78%, P < 0.01), MAFbx (+68 to 84%, P = 0.02), Hdm2 (+37 to 59%, P = 0.02), and MUSA1/Fbxo30 (+47 to 106%, P = 0.01) and the autophagy-related genes CTPL (+33 to 47%, P = 0.03) and SQSTM1 (+47 to 137%, P < 0.01) were overexpressed. Mass spectrometry identified >1700 proteins, and principal component analysis revealed three differential proteomes that matched to the three groups of patients. Orthogonal partial least square discriminant analysis created a model, which distinguished the muscles of diseased patients (LC or HD) from those of CT subjects. Proteins that most contributed to the model were selected. Functional analysis revealed up to 238 proteins belonging to nine metabolic processes (inflammatory response, proteolysis, cytoskeleton organization, glucose metabolism, muscle contraction, oxidant detoxification, energy metabolism, fatty acid metabolism, and extracellular matrix) involved in and/or altered by the atrophying programme in both LC and HD patients. This was confirmed by a co-expression network analysis. CONCLUSIONS: We were able to identify highly similar modifications of several metabolic pathways in patients exhibiting diseases with different aetiologies (early-stage LC vs. long-term renal failure). This strongly suggests that a common atrophying programme exists independently of the disease in human.


Assuntos
Falência Renal Crônica/complicações , Neoplasias Pulmonares/complicações , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Idoso , Autofagia , Biomarcadores , Biópsia , Biologia Computacional/métodos , Metabolismo Energético , Feminino , Hemólise , Humanos , Falência Renal Crônica/diagnóstico , Neoplasias Pulmonares/diagnóstico , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/diagnóstico , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteômica , Transdução de Sinais
12.
Crit Care ; 12(5): R116, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18786263

RESUMO

INTRODUCTION: Controlled mechanical ventilation (CMV) induces profound modifications of diaphragm protein metabolism, including muscle atrophy and severe ventilator-induced diaphragmatic dysfunction. Diaphragmatic modifications could be decreased by spontaneous breathing. We hypothesized that mechanical ventilation in pressure support ventilation (PSV), which preserves diaphragm muscle activity, would limit diaphragmatic protein catabolism. METHODS: Forty-two adult Sprague-Dawley rats were included in this prospective randomized animal study. After intraperitoneal anesthesia, animals were randomly assigned to the control group or to receive 6 or 18 hours of CMV or PSV. After sacrifice and incubation with 14C-phenylalanine, in vitro proteolysis and protein synthesis were measured on the costal region of the diaphragm. We also measured myofibrillar protein carbonyl levels and the activity of 20S proteasome and tripeptidylpeptidase II. RESULTS: Compared with control animals, diaphragmatic protein catabolism was significantly increased after 18 hours of CMV (33%, P = 0.0001) but not after 6 hours. CMV also decreased protein synthesis by 50% (P = 0.0012) after 6 hours and by 65% (P < 0.0001) after 18 hours of mechanical ventilation. Both 20S proteasome activity levels were increased by CMV. Compared with CMV, 6 and 18 hours of PSV showed no significant increase in proteolysis. PSV did not significantly increase protein synthesis versus controls. Both CMV and PSV increased protein carbonyl levels after 18 hours of mechanical ventilation from +63% (P < 0.001) and +82% (P < 0.0005), respectively. CONCLUSIONS: PSV is efficient at reducing mechanical ventilation-induced proteolysis and inhibition of protein synthesis without modifications in the level of oxidative injury compared with continuous mechanical ventilation. PSV could be an interesting alternative to limit ventilator-induced diaphragmatic dysfunction.


Assuntos
Diafragma/metabolismo , Proteínas Musculares/biossíntese , Respiração com Pressão Positiva/métodos , Biossíntese de Proteínas/fisiologia , Animais , Estudos Prospectivos , Ratos , Ratos Sprague-Dawley , Respiração Artificial/métodos
14.
J Cachexia Sarcopenia Muscle ; 9(1): 129-145, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29271608

RESUMO

BACKGROUND: Muscle wasting is observed in the course of many diseases and also during physiological conditions (disuse, ageing). Skeletal muscle mass is largely controlled by the ubiquitin-proteasome system and thus by the ubiquitinating enzymes (E2s and E3s) that target substrates for subsequent degradation. MuRF1 is the only E3 ubiquitin ligase known to target contractile proteins (α-actin, myosins) during catabolic situations. However, MuRF1 depends on E2 ubiquitin-conjugating enzymes for ubiquitin chain formation on the substrates. MuRF1-E2 couples are therefore putative targets for preventing muscle wasting. METHODS: We focused on 14 E2 enzymes that are either expressed in skeletal muscle or up-regulated during atrophying conditions. In this work, we demonstrated that only highly sensitive and complementary interactomic approaches (surface plasmon resonance, yeast three-hybrid, and split green fluorescent protein) allowed the identification of MuRF1 E2 partners. RESULTS: Five E2 enzymes physically interacted with MuRF1, namely, E2E1, E2G1, E2J1, E2J2, and E2L3. Moreover, we demonstrated that MuRF1-E2E1 and MuRF1-E2J1 interactions are facilitated by telethonin, a newly identified MuRF1 substrate. We next showed that the five identified E2s functionally interacted with MuRF1 since, in contrast to the non-interacting E2D2, their co-expression in HEK293T cells with MuRF1 led to increased telethonin degradation. Finally, we showed that telethonin governed the affinity between MuRF1 and E2E1 or E2J1. CONCLUSIONS: We report here the first MuRF1-E2s network, which may prove valuable for deciphering the precise mechanisms involved in the atrophying muscle programme and for proposing new therapeutical approaches.


Assuntos
Proteínas Musculares/metabolismo , Sarcopenia/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Conectina/genética , Conectina/metabolismo , Células HEK293 , Humanos , Camundongos , Proteínas Musculares/genética , Ratos , Sarcopenia/genética , Sarcopenia/patologia , Transfecção , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética
15.
Cancer Prev Res (Phila) ; 11(9): 569-580, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29954759

RESUMO

Red meat is probably carcinogenic to humans (WHO/IARC class 2A), in part through heme iron-induced lipoperoxidation. Here, we investigated whether red meat promotes carcinogenesis in rodents and modulates associated biomarkers in volunteers, speculating that an antioxidant marinade could suppress these effects via limitation of the heme induced lipid peroxidation. We gave marinated or non-marinated beef with various degrees of cooking to azoxymethane-initiated rats, Min mice, and human volunteers (crossover study). Mucin-depleted foci were scored in rats, adenoma in Min mice. Biomarkers of lipoperoxidation were measured in the feces and urine of rats, mice, and volunteers. The organoleptic properties of marinated meat were tested. Fresh beef increased colon carcinogenesis and lipoperoxidation in rats and mice and lipoperoxidation in humans. Without an adverse organoleptic effect on meat, marinade normalized peroxidation biomarkers in rat and mouse feces, reduced peroxidation in human feces and reduced the number of Mucin-depleted foci in rats and adenoma in female Min mice. This could lead to protective strategies to decrease the colorectal cancer burden associated with red meat consumption. Cancer Prev Res; 11(9); 569-80. ©2018 AACR.


Assuntos
Carcinogênese/patologia , Neoplasias do Colo/prevenção & controle , Culinária , Peroxidação de Lipídeos/fisiologia , Carne Vermelha/efeitos adversos , Adulto , Animais , Azoximetano/administração & dosagem , Azoximetano/toxicidade , Biomarcadores/análise , Carcinógenos/administração & dosagem , Neoplasias do Colo/etiologia , Estudos Cross-Over , Fezes/química , Feminino , Voluntários Saudáveis , Heme/metabolismo , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/prevenção & controle , Ratos , Ratos Endogâmicos F344
18.
Clin Nutr ; 26(5): 624-30, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17590483

RESUMO

BACKGROUND & AIMS: Ornithine alpha-ketoglutarate (OKG) is recognized to improve nutritional status in various catabolic states, such as burn injury, trauma, and sepsis. However, in wasting diseases, such as induced by cancer, the data are scarce and the precise mechanisms by which OKG acts on protein metabolism are still unclear. The aim of this study was to evaluate the ability of OKG to affect protein metabolism in an aggressive model of cancer and to modulate the ubiquitin-proteasome-dependent pathway, which in skeletal muscle is the critical degradative pathway implicated in many catabolic states, including cancer-associated cachexia. METHODS: Experiments were carried out in Yoshida sarcoma-bearing and healthy pair-fed rats. Three groups of 16 young male rats were studied during 9 days following tumor implantation: two groups of tumor-bearing rats fed a balanced regimen enriched with either OKG (5 g/kg body weight/day, OKG-K) or an isonitrogenous mixture of non-essential amino acids (C-K), and one group of healthy pair-fed rats (PF). RESULTS: As expected, Yoshida sarcoma induced muscle atrophy, decreased nitrogen balance, enhanced 3-methylhistidine (3-MH) excretion and increased mRNA levels for ubiquitin and 14-kDa ubiquitin-conjugating enzyme E2. OKG supplementation did not improve muscle mass or protein balance and did not reduce enhanced 3-MH excretion in Yoshida sarcoma-bearing rats. Furthermore, OKG did not suppress in the cancer rats the enhanced expression of ubiquitin and 14-kDa E2, despite OKG decreased by 23% the ubiquitination rate in cancer rats (OKG-K vs. C-K, P<0.05). CONCLUSIONS: These data suggest that OKG action is not universal; i.e. depending upon the model under study. In the circumstances, OKG did not counteract the increase in ubiquitin-proteasome-dependent proteolysis observed in Yoshida sarcoma-bearing rats.


Assuntos
Metilistidinas/urina , Músculo Esquelético/metabolismo , Ornitina/análogos & derivados , Proteínas/metabolismo , Sarcoma Experimental/metabolismo , Animais , Masculino , Músculo Esquelético/patologia , Atrofia Muscular/prevenção & controle , Ornitina/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Wistar
19.
Cancer Lett ; 239(1): 78-83, 2006 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16140458

RESUMO

We studied the effect of chemotherapy on liver protein synthesis in mice bearing colon 26 adenocarcinoma (C26). Liver protein mass decreased (-32%; P<0.05) in cachectic mice, but protein synthesis increased (20-35%; P<0.05) in cachectic mice, which is consistent with increased export protein synthesis. Increased protein synthesis in tumour-bearing mice was primarily mediated by increasing ( approximately 15%; P<0.05) the RNA concentration, i.e. the capacity for protein synthesis (Cs; mg RNA/g protein). Cystemustine, a nitrosourea chemotherapy that cures C26 with 100% efficacy, rapidly restored liver protein mass; protein synthesis however stayed higher than in healthy mice ( approximately 15%) throughout the initial and later stages of recovery. Chemotherapy had no significant effect on liver protein mass and synthesis in healthy mice. Reduced food intake was not a factor in this model. These data suggest a high priority for liver protein synthesis during cancer cachexia and recovery.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Fígado/metabolismo , Compostos de Nitrosoureia/uso terapêutico , Biossíntese de Proteínas , Adenocarcinoma/metabolismo , Animais , Caquexia/induzido quimicamente , Caquexia/metabolismo , Neoplasias do Colo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA