Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Commun ; 14(1): 7692, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001148

RESUMO

Direct modulation of cardiac myosin function has emerged as a therapeutic target for both heart disease and heart failure. However, the development of myosin-based therapeutics has been hampered by the lack of targeted in vitro screening assays. In this study we use Artificial Intelligence-based virtual high throughput screening (vHTS) to identify novel small molecule effectors of human ß-cardiac myosin. We test the top scoring compounds from vHTS in biochemical counter-screens and identify a novel chemical scaffold called 'F10' as a cardiac-specific low-micromolar myosin inhibitor. Biochemical and biophysical characterization in both isolated proteins and muscle fibers show that F10 stabilizes both the biochemical (i.e. super-relaxed state) and structural (i.e. interacting heads motif) OFF state of cardiac myosin, and reduces force and left ventricular pressure development in isolated myofilaments and Langendorff-perfused hearts, respectively. F10 is a tunable scaffold for the further development of a novel class of myosin modulators.


Assuntos
Miosinas Cardíacas , Insuficiência Cardíaca , Humanos , Inteligência Artificial , Miosinas/metabolismo , Fibras Musculares Esqueléticas/metabolismo
2.
Sci Rep ; 13(1): 5216, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997544

RESUMO

The large unmet demand for new heart failure therapeutics is widely acknowledged. Over the last decades the contractile myofilaments themselves have emerged as an attractive target for the development of new therapeutics for both systolic and diastolic heart failure. However, the clinical use of myofilament-directed drugs has been limited, and further progress has been hampered by incomplete understanding of myofilament function on the molecular level and screening technologies for small molecules that accurately reproduce this function in vitro. In this study we have designed, validated and characterized new high throughput screening platforms for small molecule effectors targeting the interactions between the troponin C and troponin I subunits of the cardiac troponin complex. Fluorescence polarization-based assays were used to screen commercially available compound libraries, and hits were validated using secondary screens and orthogonal assays. Hit compound-troponin interactions were characterized using isothermal titration calorimetry and NMR spectroscopy. We identified NS5806 as novel calcium sensitizer that stabilizes active troponin. In good agreement, NS5806 greatly increased the calcium sensitivity and maximal isometric force of demembranated human donor myocardium. Our results suggest that sarcomeric protein-directed screening platforms are suitable for the development of compounds that modulate cardiac myofilament function.


Assuntos
Cálcio , Ensaios de Triagem em Larga Escala , Humanos , Contração Miocárdica , Miocárdio , Troponina I
3.
J Gen Physiol ; 155(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36633584

RESUMO

In healthy hearts, myofilaments become more sensitive to Ca2+ as the myocardium is stretched. This effect is known as length-dependent activation and is an important cellular-level component of the Frank-Starling mechanism. Few studies have measured length-dependent activation in the myocardium from failing human hearts. We investigated whether ischemic and non-ischemic heart failure results in different length-dependent activation responses at physiological temperature (37°C). Myocardial strips from the left ventricular free wall were chemically permeabilized and Ca2+-activated at sarcomere lengths (SLs) of 1.9 and 2.3 µm. Data were acquired from 12 hearts that were explanted from patients receiving cardiac transplants; 6 had ischemic heart failure and 6 had non-ischemic heart failure. Another 6 hearts were obtained from organ donors. Maximal Ca2+-activated force increased at longer SL for all groups. Ca2+ sensitivity increased with SL in samples from donors (P < 0.001) and patients with ischemic heart failure (P = 0.003) but did not change with SL in samples from patients with non-ischemic heart failure. Compared with donors, troponin I phosphorylation decreased in ischemic samples and even more so in non-ischemic samples; cardiac myosin binding protein-C (cMyBP-C) phosphorylation also decreased with heart failure. These findings support the idea that troponin I and cMyBP-C phosphorylation promote length-dependent activation and show that length-dependent activation of contraction is blunted, yet extant, in the myocardium from patients with ischemic heart failure and further reduced in the myocardium from patients with non-ischemic heart failure. Patients who have a non-ischemic disease may exhibit a diminished contractile response to increased ventricular filling.


Assuntos
Insuficiência Cardíaca , Sarcômeros , Humanos , Sarcômeros/metabolismo , Cálcio/metabolismo , Troponina I/metabolismo , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Insuficiência Cardíaca/metabolismo
4.
Langmuir ; 28(6): 3206-16, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22216832

RESUMO

We describe a method that combines colloidal probe atomic force microscopy (AFM) and reflection interference contrast microscopy (RICM) to characterize the mechanical properties of thin and solvated polymer films. When analyzing polymer films, a fundamental problem in colloidal probe AFM experiments is to determine the distance at closest approach between the probe and the substrate on which the film is deposited. By combining AFM and RICM in situ, forces and absolute distances can be measured simultaneously. Using the combined setup, we quantify the compressive mechanics of films of the polysaccharide hyaluronan that is end-grafted to a supported lipid bilayer. The experimental data, and comparison with polymer theory, show that hyaluronan films are well-described as elastic, very soft and highly solvated polymer brushes. The data on these well-defined films should be a useful reference for the investigation of the more complex hyaluronan-rich coats that surround many living cells.


Assuntos
Ácido Hialurônico/química , Microscopia de Força Atômica/métodos , Microscopia de Interferência/métodos , Polímeros/química , Bicamadas Lipídicas/química
5.
Biomacromolecules ; 13(5): 1466-77, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22455455

RESUMO

Hyaluronan (HA) is a naturally occurring linear, negatively charged polysaccharide that plays a vital role in the organization and function of pericellular coats and extracellular matrices in vertebrates, and that is becoming increasingly popular in biomedical applications. To gain insight into the physical phenomena that govern the mechanical behavior of HA assemblies, we have studied the response of films of end-grafted HA to compression over a large range of ionic strength. Compression forces were measured as a function of the absolute distance between a colloidal probe and the planar surface on which the HA film was constructed, using a combined atomic force microscopy and reflection interference contrast microscopy setup. The HA films were well-defined in the sense that they are made of chains with a narrow size distribution that are grafted at controlled density to a solid support. Detailed comparison of the experimental data with analytical expressions derived from polymer and polyelectrolyte brush theory reveals that films of end-grafted HA behave as strongly charged polyelectrolyte brushes. To quantitatively reproduce the experimental data, intrinsic excluded volume interactions and chain stiffness of the polymer backbone must be taken into account. At low ionic strength, chains become almost fully stretched. In our experimental system, several micrometer thick films are formed that reach a hydration of up to 99.98%, and the brush thickness decreases by more than 5-fold with increasing ionic strength. More generally, the study provides quantitative theoretical predictions for the film thickness and compressive response as a function of HA length, grafting density and ionic strength.


Assuntos
Ácido Hialurônico/química , Membranas Artificiais , Polímeros/química , Eletrólitos/química , Concentração Osmolar , Cloreto de Sódio/química
6.
PLoS One ; 9(8): e103751, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25090007

RESUMO

Movements in animals arise through concerted action of neurons and skeletal muscle. General anaesthetics prevent movement and cause loss of consciousness by blocking neural function. Anaesthetics of the amino amide-class are thought to act by blockade of voltage-gated sodium channels. In fish, the commonly used anaesthetic tricaine methanesulphonate, also known as 3-aminobenzoic acid ethyl ester, metacaine or MS-222, causes loss of consciousness. However, its role in blocking action potentials in distinct excitable cells is unclear, raising the possibility that tricaine could act as a neuromuscular blocking agent directly causing paralysis. Here we use evoked electrical stimulation to show that tricaine efficiently blocks neural action potentials, but does not prevent directly evoked muscle contraction. Nifedipine-sensitive L-type Cav channels affecting movement are also primarily neural, suggesting that muscle Nav channels are relatively insensitive to tricaine. These findings show that tricaine used at standard concentrations in zebrafish larvae does not paralyse muscle, thereby diminishing concern that a direct action on muscle could mask a lack of general anaesthesia.


Assuntos
Aminobenzoatos/farmacologia , Anestésicos/farmacologia , Contração Muscular/efeitos dos fármacos , Neurônios/fisiologia , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Estimulação Elétrica , Potenciais Evocados/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA