Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554187

RESUMO

CD40L-CD40-TRAF signaling plays a role in atherosclerosis progression and affects the pathogenesis of coronary heart disease (CHD). We tested the hypothesis that CD40L-CD40-TRAF signaling is a potential therapeutic target in hyperlipidemia, diabetes, and hypertension. In mouse models of hyperlipidemia plus diabetes (db/db mice) or hypertension (1 mg/kg/d angiotensin-II for 7 days), TRAF6 inhibitor treatment (2.5 mg/kg/d for 7 or 14 days) normalized markers of oxidative stress and inflammation. As diabetes and hypertension are important comorbidities aggravating CHD, we explored whether the CD40L-CD40-TRAF signaling cascade and their associated inflammatory pathways are expressed in CHD patients suffering from comorbidities. Therefore, we analyzed vascular bypass material (aorta or internal mammary artery) and plasma from patients with CHD with diabetes and/or hypertension. Our Olink targeted plasma proteomic analysis using the IMMUNO-ONCOLOGY panel revealed a pattern of step-wise increase for 13/92 markers of low-grade inflammation with significant changes. CD40L or CD40 significantly correlated with 38 or 56 other inflammatory targets. In addition, specific gene clusters that correlate with the comorbidities were identified in isolated aortic mRNA of CHD patients through RNA-sequencing. These signaling clusters comprised CD40L-CD40-TRAF, immune system, hemostasis, muscle contraction, metabolism of lipids, developmental biology, and apoptosis. Finally, immunological analysis revealed key markers correlated with comorbidities in CHD patients, such as CD40L, NOX2, CD68, and 3-nitrotyrosine. These data indicate that comorbidities increase inflammatory pathways in CHD, and targeting these pathways will be beneficial in reducing cardiovascular events in CHD patients with comorbidities.

2.
Circ Res ; 131(8): 701-712, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36102188

RESUMO

BACKGROUND: Amino acid metabolism is crucial for inflammatory processes during atherogenesis. The endogenous amino acid homoarginine is a robust biomarker for cardiovascular outcome and mortality with high levels being protective. However, the underlying mechanisms remain elusive. We investigated the effect of homoarginine supplementation on atherosclerotic plaque development with a particular focus on inflammation. METHODS: Female ApoE-deficient mice were supplemented with homoarginine (14 mg/L) in drinking water starting 2 weeks before and continuing throughout a 6-week period of Western-type diet feeding. Control mice received normal drinking water. Immunohistochemistry and flow cytometry were used for plaque- and immunological phenotyping. T cells were characterized using mass spectrometry-based proteomics, by functional in vitro approaches, for example, proliferation and migration/chemotaxis assays as well as by super-resolution microscopy. RESULTS: Homoarginine supplementation led to a 2-fold increase in circulating homoarginine concentrations. Homoarginine-treated mice exhibited reduced atherosclerosis in the aortic root and brachiocephalic trunk. A substantial decrease in CD3+ T cells in the atherosclerotic lesions suggested a T-cell-related effect of homoarginine supplementation, which was mainly attributed to CD4+ T cells. Macrophages, dendritic cells, and B cells were not affected. CD4+ T-cell proteomics and subsequent pathway analysis together with in vitro studies demonstrated that homoarginine profoundly modulated the spatial organization of the T-cell actin cytoskeleton and increased filopodia formation via inhibition of Myh9 (myosin heavy chain 9). Further mechanistic studies revealed an inhibition of T-cell proliferation as well as a striking impairment of the migratory capacities of T cells in response to relevant chemokines by homoarginine, all of which likely contribute to its atheroprotective effects. CONCLUSIONS: Our study unravels a novel mechanism by which the amino acid homoarginine reduces atherosclerosis, establishing that homoarginine modulates the T-cell cytoskeleton and thereby mitigates T-cell functions important during atherogenesis. These findings provide a molecular explanation for the beneficial effects of homoarginine in atherosclerotic cardiovascular disease.


Assuntos
Aterosclerose , Água Potável , Placa Aterosclerótica , Aminoácidos , Animais , Apolipoproteínas E , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Feminino , Homoarginina/farmacologia , Camundongos , Cadeias Pesadas de Miosina , Linfócitos T/metabolismo
3.
Haematologica ; 108(7): 1873-1885, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36475519

RESUMO

The co-stimulatory CD40-CD40L dyad plays an important role in chronic inflammatory diseases associated with aging. Although CD40 is mainly expressed by immune cells, CD40 is also present on adipocytes. We aimed to delineate the role of adipocyte CD40 in the aging hematopoietic system and evaluated the effects of adipocyte CD40 deficiency on cardiometabolic diseases. Adult adipocyte CD40-deficient mice (AdiCD40KO) mice had a decrease in bone marrow hematopoietic stem cells (Lin-Sca+cKit+, LSK) and common lymphoid progenitors, which was associated with increased bone marrow adiposity and T-cell activation, along with elevated plasma corticosterone levels, a phenotype that became more pronounced with age. Atherosclerotic AdiCD40koApoE-/- (CD40AKO) mice also displayed changes in the LSK population, showing increased myeloid and lymphoid multipotent progenitors, and augmented corticosterone levels. Increased T-cell activation could be observed in bone marrow, spleen, and adipose tissue, while the numbers of B cells were decreased. Although atherosclerosis was reduced in CD40AKO mice, plaques contained more activated T cells and larger necrotic cores. Analysis of peripheral adipose tissue in a diet-induced model of obesity revealed that obese AdiCD40KO mice had increased T-cell activation in adipose tissue and lymphoid organs, but decreased weight gain and improved insulin sensitivity, along with increased fat oxidation. In conclusion, adipocyte CD40 plays an important role in maintaining immune cell homeostasis in bone marrow during aging and chronic inflammatory diseases, particularly of the lymphoid populations. Although adipocyte CD40 deficiency reduces atherosclerosis burden and ameliorates diet-induced obesity, the accompanying T-cell activation may eventually aggravate cardiometabolic diseases.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Animais , Camundongos , Corticosterona/farmacologia , Adipócitos , Obesidade , Inflamação , Antígenos CD40/genética , Ligante de CD40 , Hematopoese , Camundongos Endogâmicos C57BL
4.
Amino Acids ; 54(6): 889-896, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35618975

RESUMO

Homoarginine is an endogenous amino acid whose levels are reduced in patients with renal, cardio- and cerebrovascular disease. Moreover, low homoarginine concentrations independently predict morbidity and mortality in these patients. Besides endogenous synthesis, homoarginine is also a constituent of the human diet. The objective of the present study was to analyze the kinetics of orally supplemented homoarginine in human plasma by means of a pharmacometric approach. We developed a pharmacometric model to evaluate different dosing regimens, especially the regimen of 125 mg once weekly, based on a previous clinical study (n = 20). The model was adapted to account for differences in baseline homoarginine plasma concentrations between healthy and diseased individuals. A novel dosing regimen of 25 mg once daily led to higher attainment of homoarginine reference concentrations using clinical trial simulations. With 25 mg/day, the trough concentration of only 6% of the older and 3.8% of the younger population was predicted to be below the target concentration of 2.0-4.1 µmol/L. In synopsis, the new dosing regimen recapitulates the kinetics of homoarginine in healthy individuals optimally.


Assuntos
Doenças Cardiovasculares , Homoarginina , Suplementos Nutricionais , Fatores de Risco de Doenças Cardíacas , Humanos , Cinética , Fatores de Risco
5.
Eur Heart J ; 41(31): 2938-2948, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32728688

RESUMO

AIMS: GITR-a co-stimulatory immune checkpoint protein-is known for both its activating and regulating effects on T-cells. As atherosclerosis bears features of chronic inflammation and autoimmunity, we investigated the relevance of GITR in cardiovascular disease (CVD). METHODS AND RESULTS: GITR expression was elevated in carotid endarterectomy specimens obtained from patients with cerebrovascular events (n = 100) compared to asymptomatic patients (n = 93) and correlated with parameters of plaque vulnerability, including plaque macrophage, lipid and glycophorin A content, and levels of interleukin (IL)-6, IL-12, and C-C-chemokine ligand 2. Soluble GITR levels were elevated in plasma from subjects with CVD compared to healthy controls. Plaque area in 28-week-old Gitr-/-Apoe-/- mice was reduced, and plaques had a favourable phenotype with less macrophages, a smaller necrotic core and a thicker fibrous cap. GITR deficiency did not affect the lymphoid population. RNA sequencing of Gitr-/-Apoe-/- and Apoe-/- monocytes and macrophages revealed altered pathways of cell migration, activation, and mitochondrial function. Indeed, Gitr-/-Apoe-/- monocytes displayed decreased integrin levels, reduced recruitment to endothelium, and produced less reactive oxygen species. Likewise, GITR-deficient macrophages produced less cytokines and had a reduced migratory capacity. CONCLUSION: Our data reveal a novel role for the immune checkpoint GITR in driving myeloid cell recruitment and activation in atherosclerosis, thereby inducing plaque growth and vulnerability. In humans, elevated GITR expression in carotid plaques is associated with a vulnerable plaque phenotype and adverse cerebrovascular events. GITR has the potential to become a novel therapeutic target in atherosclerosis as it reduces myeloid cell recruitment to the arterial wall and impedes atherosclerosis progression.


Assuntos
Aterosclerose , Proteína Relacionada a TNFR Induzida por Glucocorticoide , Placa Aterosclerótica , Animais , Apolipoproteínas E/genética , Modelos Animais de Doenças , Glucocorticoides , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Receptores do Fator de Necrose Tumoral
6.
Circulation ; 139(21): 2466-2482, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30894016

RESUMO

BACKGROUND: Atherosclerosis progression is modulated by interactions with the adaptive immune system. Humoral immunity can help protect against atherosclerosis formation; however, the existence, origin, and function of putative atherogenic antibodies are controversial. How such atherosclerosis-promoting antibodies could affect the specific composition and stability of plaques, as well as the vasculature generally, remains unknown. METHODS: We addressed the overall contribution of antibodies to atherosclerosis plaque formation, composition, and stability in vivo (1) with mice that displayed a general loss of antibodies, (2) with mice that had selectively ablated germinal center-derived IgG production, or (3) through interruption of T-B-cell interactions and further studied the effects of antibody deficiency on the aorta by transcriptomics. RESULTS: Here, we demonstrate that atherosclerosis-prone mice with attenuated plasma cell function manifest reduced plaque burden, indicating that antibodies promote atherosclerotic lesion size. However, the composition of the plaque was altered in antibody-deficient mice, with an increase in lipid content and decreases in smooth muscle cells and macrophages, resulting in an experimentally validated vulnerable plaque phenotype. Furthermore, IgG antibodies enhanced smooth muscle cell proliferation in vitro in an Fc receptor-dependent manner, and antibody-deficient mice had decreased neointimal hyperplasia formation in vivo. These IgG antibodies were shown to be derived from germinal centers, and mice genetically deficient for germinal center formation had strongly reduced atherosclerosis plaque formation. mRNA sequencing of aortas revealed that antibodies are required for the sufficient expression of multiple signal-induced and growth-promoting transcription factors and that aortas undergo large-scale metabolic reprograming in their absence. Using an elastase model, we demonstrated that absence of IgG results in an increased severity of aneurysm formation. CONCLUSIONS: We propose that germinal center-derived IgG antibodies promote the size and stability of atherosclerosis plaques, through promoting arterial smooth muscle cell proliferation and maintaining the molecular identity of the aorta. These results could have implications for therapies that target B cells or B-T-cell interactions because the loss of humoral immunity leads to a smaller but less stable plaque phenotype.


Assuntos
Aorta/imunologia , Doenças da Aorta/imunologia , Aterosclerose/imunologia , Centro Germinativo/imunologia , Imunoglobulina G/imunologia , Placa Aterosclerótica , Animais , Antígenos CD19/genética , Antígenos CD19/metabolismo , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Centro Germinativo/metabolismo , Imunoglobulina G/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Fator 1 de Ligação ao Domínio I Regulador Positivo/deficiência , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Ruptura Espontânea , Linfócitos T/imunologia , Linfócitos T/metabolismo
7.
Arterioscler Thromb Vasc Biol ; 39(3): 319-330, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30650999

RESUMO

As a leading cause of death worldwide, cardiovascular disease is a global health concern. The development and progression of atherosclerosis, which ultimately gives rise to cardiovascular disease, has been causally linked to hypercholesterolemia. Mechanistically, the interplay between lipids and the immune system during plaque progression significantly contributes to the chronic inflammation seen in the arterial wall during atherosclerosis. Localized inflammation and increased cell-to-cell interactions may influence polarization and proliferation of immune cells via changes in amino acid metabolism. Specifically, the amino acids l-arginine (Arg), l-homoarginine (hArg) and l-tryptophan (Trp) have been widely studied in the context of cardiovascular disease, and their metabolism has been established as key regulators of vascular homeostasis, as well as immune cell function. Cyclic effects between endothelial cells, innate, and adaptive immune cells exist during Arg and hArg, as well as Trp metabolism, that may have distinct effects on the development of atherosclerosis. In this review, we describe the current knowledge surrounding the metabolism, biological function, and clinical perspective of Arg, hArg, and Trp in the context of atherosclerosis.


Assuntos
Aminoácidos/metabolismo , Aterosclerose/metabolismo , Animais , Arginase/antagonistas & inibidores , Arginase/metabolismo , Arginina/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/etiologia , Aterosclerose/imunologia , Progressão da Doença , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Homoarginina/metabolismo , Humanos , Hipercolesterolemia/complicações , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Subpopulações de Linfócitos/imunologia , Terapia de Alvo Molecular , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Triptofano/metabolismo , Vasculite/metabolismo
8.
Eur Heart J ; 40(48): 3937-3946, 2019 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-31121017

RESUMO

The outcomes of the Canakinumab Anti-inflammatory Thrombosis Outcome Study (CANTOS) trial have unequivocally proven that inflammation is a key driver of atherosclerosis and that targeting inflammation, in this case by using an anti-interleukin-1ß antibody, improves cardiovascular disease (CVD) outcomes. This is especially true for CVD patients with a pro-inflammatory constitution. Although CANTOS has epitomized the importance of targeting inflammation in atherosclerosis, treatment with canakinumab did not improve CVD mortality, and caused an increase in infections. Therefore, the identification of novel drug targets and development of novel therapeutics that block atherosclerosis-specific inflammatory pathways and exhibit limited immune-suppressive side effects, as pursued in our collaborative research centre, are required to optimize immunotherapy for CVD. In this review, we will highlight the potential of novel immunotherapeutic targets that are currently considered to become a future treatment for CVD.


Assuntos
Doenças Cardiovasculares/terapia , Citocinas/efeitos dos fármacos , Fatores Imunológicos/uso terapêutico , Imunoterapia/métodos , Interleucina-1beta/antagonistas & inibidores , Anti-Inflamatórios/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Aterosclerose/complicações , Aterosclerose/tratamento farmacológico , Aterosclerose/imunologia , Doenças Cardiovasculares/mortalidade , Doença da Artéria Coronariana/prevenção & controle , Citocinas/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Países Baixos/epidemiologia , Ensaios Clínicos Controlados Aleatórios como Assunto
9.
Eur Heart J ; 40(4): 372-382, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30452556

RESUMO

Aims: The E3-ligase CBL-B (Casitas B-cell lymphoma-B) is an important negative regulator of T cell activation that is also expressed in macrophages. T cells and macrophages mediate atherosclerosis, but their regulation in this disease remains largely unknown; thus, we studied the function of CBL-B in atherogenesis. Methods and results: The expression of CBL-B in human atherosclerotic plaques was lower in advanced lesions compared with initial lesions and correlated inversely with necrotic core area. Twenty weeks old Cblb-/-Apoe-/- mice showed a significant increase in plaque area in the aortic arch, where initial plaques were present. In the aortic root, a site containing advanced plaques, lesion area rose by 40%, accompanied by a dramatic change in plaque phenotype. Plaques contained fewer macrophages due to increased apoptosis, larger necrotic cores, and more CD8+ T cells. Cblb-/-Apoe-/- macrophages exhibited enhanced migration and increased cytokine production and lipid uptake. Casitas B-cell lymphoma-B deficiency increased CD8+ T cell numbers, which were protected against apoptosis and regulatory T cell-mediated suppression. IFNγ and granzyme B production was enhanced in Cblb-/-Apoe-/- CD8+ T cells, which provoked macrophage killing. Depletion of CD8+ T cells in Cblb-/-Apoe-/- bone marrow chimeras rescued the phenotype, indicating that CBL-B controls atherosclerosis mainly through its function in CD8+ T cells. Conclusion: Casitas B-cell lymphoma-B expression in human plaques decreases during the progression of atherosclerosis. As an important regulator of immune responses in experimental atherosclerosis, CBL-B hampers macrophage recruitment and activation during initial atherosclerosis and limits CD8+ T cell activation and CD8+ T cell-mediated macrophage death in advanced atherosclerosis, thereby preventing the progression towards high-risk plaques.


Assuntos
Aterosclerose/etiologia , Linfócitos T CD8-Positivos/imunologia , Linfoma de Células B/complicações , Macrófagos/patologia , Proteína Oncogênica v-cbl/metabolismo , Placa Aterosclerótica/etiologia , Animais , Apoptose , Aterosclerose/metabolismo , Aterosclerose/patologia , Modelos Animais de Doenças , Humanos , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia
10.
Anal Biochem ; 577: 59-66, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31028716

RESUMO

l-Homoarginine (hArg) is biosynthesized from l-arginine (Arg) and l-lysine (Lys) by arginine:glycine amidinotransferase (AGAT). AGAT also catalyzes the formation of guanidinoacetate (GAA) from Arg and glycine (Gly). GAA is converted to creatine (N-methyl guanidinoacetate) by guanidinoacetate N-methyl-transferase (GAMT). Low circulating and excretory concentrations of hArg are associated with worse cardiovascular outcome and mortality. hArg is a poor substrate of nitric oxide synthase (NOS) and a weak inhibitor of arginase. The metabolism of hArg in humans is little investigated. Previously, we found that orally administered hArg (125 mg/day) increased the plasma concentration of hArg, but not of Arg, the substrate of NOS, in healthy subjects. We newly analyzed the plasma samples collected in that study for Lys and other amino acids. Repeated measures ANOVA revealed statistically significant differences between the groups (P = 0.008) with respect to plasma Lys concentration which increased by about 8% after a 4-week hArg supplementation. In vitro, recombinant human arginase and bovine liver arginase I were demonstrated by a specific and sensitive stable-isotope GC-MS assay to hydrolyze hArg to Lys. Our results suggest that Lys is a metabolite of hArg produced by the hydrolytic activity of arginase. Arginase may play a key role in hArg homeostasis in humans.


Assuntos
Arginase/metabolismo , Arginina , Homoarginina , Lisina , Adulto , Arginina/sangue , Arginina/metabolismo , Feminino , Homoarginina/sangue , Homoarginina/metabolismo , Humanos , Lisina/sangue , Lisina/metabolismo , Masculino , Óxido Nítrico/metabolismo , Adulto Jovem
11.
Circulation ; 135(6): 544-555, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28153991

RESUMO

BACKGROUND: Few data are available comparing cardiovascular disease (CVD) biomarker profiles between women and men in the general population. We analyzed sex-based differences in multiple biomarkers reflecting distinct pathophysiological pathways, accounting for differences between women and men in CVD risk factors, body composition, and cardiac morphology. METHODS: A cross-sectional analysis was performed using data from the Dallas Heart Study, a multiethnic population-based study. Associations between sex and 30 distinct biomarkers representative of 6 pathophysiological categories were evaluated using multivariable linear regression adjusting for age, race, traditional CVD risk factors, kidney function, insulin resistance, MRI and dual-energy x-ray absorptiometry measures of body composition and fat distribution, and left ventricular mass. RESULTS: After excluding participants with CVD, the study population included 3439 individuals, mean age 43 years, 56% women, and 52% black. Significant sex-based differences were seen in multiple categories of biomarkers, including lipids, adipokines, and biomarkers of inflammation, endothelial dysfunction, myocyte injury and stress, and kidney function. In fully adjusted models, women had higher levels of high-density lipoprotein cholesterol and high-density lipoprotein particle concentration, leptin, d-dimer, homoarginine, and N-terminal pro B-type natriuretic peptide, and lower levels of low-density lipoprotein cholesterol, adiponectin, lipoprotein-associated phospholipase A2 mass and activity, monocyte chemoattractant protein-1, soluble endothelial cell adhesion molecule, symmetrical dimethylarginine, asymmetrical dimethylarginine, high-sensitivity troponin T, and cystatin C. CONCLUSIONS: Biomarker profiles differ significantly between women and men in the general population. Sex differences were most apparent for biomarkers of adiposity, endothelial dysfunction, inflammatory cell recruitment, and cardiac stress and injury. Future studies are needed to characterize whether pathophysiological processes delineated by these biomarkers contribute to sex-based differences in the development and complications of CVD.


Assuntos
Biomarcadores/metabolismo , Doenças Cardiovasculares/sangue , Adulto , Doenças Cardiovasculares/fisiopatologia , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Fatores Sexuais
12.
Am J Pathol ; 187(12): 2912-2919, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28935569

RESUMO

The costimulatory molecule CD40 is a major driver of atherosclerosis. It is expressed on a wide variety of cell types, including mature dendritic cells (DCs), and is required for optimal T-cell activation and expansion. It remains undetermined whether and how CD40 on DCs impacts the pathogenesis of atherosclerosis. Here, the effects of constitutively active CD40 in DCs on atherosclerosis were examined using low-density lipoprotein-deficient (Ldlr-/-) bone marrow chimeras that express a transgene containing an engineered latent membrane protein 1 (LMP)/CD40 fusion protein conferring constitutive CD40 signaling under control of the DC-specific CD11c promoter (DC-LMP1/CD40). As expected, DC-LMP1/CD40/Ldlr-/- chimeras (DC-LMP1/CD40) showed increased antigen-presenting capacity of DCs and increased T-cell numbers. However, the mice developed extensive neutrophilia compared to CD40wt/Ldlr-/- (CD40wt) chimeras. Despite overt T-cell expansion and neutrophilia, a reduction in conventional DC frequency and a dramatic (approximately 80%) reduction in atherosclerosis was observed. Further analyses revealed that cholesterol and triglyceride levels had decreased by 37% and 60%, respectively, in DC-LMP1/CD40 chimeras. Moreover, DC-LMP1/CD40 chimeras developed inflammatory bowel disease characterized by massive transmural influx of leukocytes and lymphocytes, resulting in villous degeneration and lipid malabsorption. Constitutive activation of CD40 in DCs results in inflammation of the gastrointestinal tract, thereby impairing lipid uptake, which consequently results in attenuated atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Antígenos CD40/metabolismo , Colesterol/metabolismo , Células Dendríticas/metabolismo , Transdução de Sinais/fisiologia , Animais , Aterosclerose/imunologia , Células Dendríticas/imunologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Ativação Linfocitária/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes
13.
Biomarkers ; 23(6): 540-550, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29619838

RESUMO

OBJECTIVE: Elevated levels of arginine derivatives in the NO pathway, such as asymmetric dimethylarginine (ADMA), are related to disease severity and reduced exercise capacity in heart failure (HF). We investigated the influence of exercise intervention on these parameters and on L-arginine (L-Arg) and L-homoarginine (L-hArg) in HF with preserved ejection fraction (HFpEF) patients. MATERIAL AND METHODS: Sixty-two patients (65 ± 6 years) were included in this analysis and randomized to supervised endurance/resistance training (ET) or to usual care (UC). EDTA-plasma was analysed for NO metabolites. RESULTS: There were baseline associations for adjusted values of maximum workload with ADMA (r= -0.322, p = 0.028) and L-Arg/ADMA ratio (r = 0.331, p = 0.015), and for the 6-min walk test (6MWT) with ADMA (r= -0.314, p = 0.024) and L-Arg/ADMA ratio (r = 0.346, p = 0.015). No significant differences between UC and ET changes of NO parameters were observed at 3-month follow-up. Higher L-hArg levels were associated with a greater improvement in peak oxygen uptake (peak [Formula: see text]O2) at follow-up: 3.4 ± 2.8 vs. 1.1 ± 2.9 mL/min/kg (p = 0.005). CONCLUSIONS: Exercise intervention did not influence NO parameters in HFpEF patients, but L-hArg was related to change in peak [Formula: see text]O2.


Assuntos
Terapia por Exercício/métodos , Insuficiência Cardíaca/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais , Volume Sistólico/fisiologia , Idoso , Arginina/análogos & derivados , Arginina/metabolismo , Biomarcadores/metabolismo , Feminino , Seguimentos , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
14.
Basic Res Cardiol ; 112(5): 55, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819685

RESUMO

Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthases that limits nitric oxide bioavailability. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) exerts a critical role for ADMA degradation and plays an important role in NO signaling. In the heart, DDAH1 is observed in endothelial cells and in the sarcolemma of cardiomyocytes. While NO signaling is important for cardiac adaptation to stress, DDAH1 impact on cardiomyocyte homeostasis is not clear. Here we used the MerCreMer-LoxP model to specifically disrupt cardiomyocyte DDAH1 expression in adult mice to determine the physiological impact of cardiomyocyte DDAH1 under basal conditions and during hypertrophic stress imposed by transverse aortic constriction (TAC). Under control conditions, cardiomyocyte-specific DDAH1 knockout (cDDAH KO) had no detectable effect on plasma ADMA and left ventricular (LV) hypertrophy or function in adult or aging mice. In response to TAC, DDAH1 levels were elevated 2.5-fold in WT mice, which exhibited no change in LV or plasma ADMA content and moderate LV hypertrophy and LV dysfunction. In contrast, cDDAH1 KO mice exposed to TAC showed no increase in LV DDAH1 expression, slightly increased LV tissue ADMA levels, no increase in plasma ADMA, but significantly exacerbated LV hypertrophy, fibrosis, nitrotyrosine production, and LV dysfunction. These findings indicate cardiomyocyte DDAH1 activity is dispensable for cardiac function under basal conditions, but plays an important role in attenuating cardiac hypertrophy and ventricular remodeling under stress conditions, possibly through locally confined regulation of subcellular ADMA and NO signaling.


Assuntos
Amidoidrolases/metabolismo , Hipertrofia Ventricular Esquerda/prevenção & controle , Miócitos Cardíacos/enzimologia , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda , Remodelação Ventricular , Amidoidrolases/deficiência , Amidoidrolases/genética , Animais , Arginina/análogos & derivados , Arginina/sangue , Fator Natriurético Atrial/metabolismo , Modelos Animais de Doenças , Fibrose , Predisposição Genética para Doença , Hipertrofia Ventricular Esquerda/enzimologia , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Camundongos Knockout , Miócitos Cardíacos/patologia , Óxido Nítrico/metabolismo , Fenótipo , Transdução de Sinais , Tirosina/análogos & derivados , Tirosina/metabolismo , Disfunção Ventricular Esquerda/enzimologia , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/fisiopatologia
15.
Amino Acids ; 49(1): 173-182, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27796501

RESUMO

L-Arginine is the substrate of endothelial nitric oxide (NO) synthase forming NO which inherits various biological cardio-protective functions. The dimethylarginines asymmetric (ADMA) and symmetric dimethylarginine (SDMA) can impair the synthesis of NO and are elevated in patients with cardiovascular disease, including heart failure (HF). We investigated the association between dimethylarginines and HF risk in a case-cohort study of the European Prospective Investigation into Cancer and Nutrition (n = 27,548), comprising a random subcohort (n = 2224 including 19 HF cases), and all remaining HF cases (n = 176) that occurred within 8.3 years of follow-up. Serum concentrations of dimethylarginines were measured using liquid chromatography-tandem mass spectrometry. Hazards ratios (HRs) and 95% confidence intervals (CI) were estimated across quartiles and per doubling of ADMA and SDMA concentrations using Cox's proportional hazards regression. After multivariable adjustment, each doubling of ADMA was associated with a 60% higher HF risk (HR [95% CI] 1.60 [1.10-2.31]). Between SDMA and HF risk a U-shaped association was observed (HR [95% CI] for the second, third and fourth quartile compared to the first: 0.52 [0.33-0.82], 0.63 [0.40-0.99], and 0.71 [0.46-1.10], p for nonlinearity <0.01). We provide substantiated evidence for a relationship between ADMA and cardiovascular endpoints. In addition to the established relation between ADMA and myocardial infarction, our findings indicate a positive association between ADMA and HF incidence in persons without apparent myocardial infarction. Targeting the ADMA metabolism might open up new therapeutic perspective for HF prevention and treatment. Further investigations are needed to shed more light on mechanisms involved in the pathogenesis of HF related to elevated ADMA levels.


Assuntos
Arginina/análogos & derivados , Arginina/sangue , Insuficiência Cardíaca/diagnóstico , Infarto do Miocárdio/diagnóstico , Adulto , Idoso , Biomarcadores/sangue , Comportamento Alimentar/fisiologia , Feminino , Alemanha , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/sangue , Infarto do Miocárdio/mortalidade , Prognóstico , Modelos de Riscos Proporcionais , Estudos Prospectivos , Risco
16.
Am Heart J ; 176: 100-6, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27264226

RESUMO

BACKGROUND: Oxidative stress plays an important role in the development of atrial fibrillation (AF). Arginine derivatives including asymmetric dimethylarginine (ADMA) are central to nitric oxide metabolism and nitrosative stress. Whether blood concentrations of arginine derivatives are related to incidence of AF is uncertain. METHODS AND RESULTS: In 3,310 individuals (mean age 58 ± 10 years, 54% women) from the community-based Framingham Study, we prospectively examined the relations of circulating levels of ADMA, l-arginine, symmetric dimethylarginine (SDMA), and the ratio of l-arginine/ADMA to incidence of AF using proportional hazards regression models. Over a median follow-up time of 10 years, 247 AF cases occurred. Using age- and sex-adjusted regression models, ADMA was associated with a hazard ratio of 1.15 per 1-SD increase in loge-biomarker concentration (95% CI 1.02-1.29, P = .02) for AF, which was no longer significant after further risk factor adjustment (hazard ratio 1.09, 95% CI 0.97-1.23, P = .15). Neither l-arginine nor SDMA was related to new-onset AF. A clinical model comprising clinical risk factors for AF (for age, sex, height, weight, systolic blood pressure, diastolic blood pressure, current smoking, diabetes, hypertension treatment, myocardial infarction, and heart failure; c statistic = 0.781; 95% CI 0.753-0.808) was not improved by the addition of ADMA (0.782; 95% CI 0.755-0.809). CONCLUSIONS: Asymmetric dimethylarginine and related arginine derivatives were not associated with incident AF in the community after accounting for other clinical risk factors and confounders. Its role in the pathogenesis of AF needs further refinement.


Assuntos
Arginina/análogos & derivados , Idoso , Arginina/sangue , Arginina/metabolismo , Fibrilação Atrial/sangue , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/epidemiologia , Biomarcadores/sangue , Biomarcadores/metabolismo , Estudos de Coortes , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/fisiologia , Modelos de Riscos Proporcionais , Reprodutibilidade dos Testes , Estatística como Assunto
17.
Amino Acids ; 48(3): 801-810, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26573539

RESUMO

Nitric oxide (NO) synthesis capacity is determined by the availability of substrate(s) such as L-arginine and the influence of nitric oxide synthase (NOS) inhibitors, asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA). These factors may be important in black South Africans with a very high prevalence of hypertension. We compared ambulatory blood pressure (BP), markers of end organ damage and NO synthesis capacity markers [L-arginine, L-homoarginine, L-citrulline, L-arginine:ADMA, ADMA, SDMA and dimethylarginine (DMA)], between black and white teachers (n = 390). Associations of nighttime BP and markers of end organ damage with NO synthesis capacity markers were also investigated. Although black men and women had higher BP and albumin-to-creatinine ratio (ACR) (all p < 0.001), they also had higher L-arginine, L-homoarginine, L-arginine:ADMA and lower SDMA and DMA levels (all p < 0.05). Only in white men ADMA concentrations associated positively with nighttime systolic blood pressure (R (2) = 0.20, ß = 0.26, p = 0.009), nighttime diastolic blood pressure (R (2) = 0.23, ß = 0.27, p = 0.007), carotid intima media thickness (cIMT) (R (2) = 0.36, ß = 0.22, p = 0.008) and ACR (R (2) = 0.14, ß = 0.32, p = 0.001). Our findings suggest that despite an adverse cardiovascular profile in blacks, their NO synthesis capacity profile seems favourable, and that other factors, such as NO inactivation, may prove to be more important.


Assuntos
Pressão Sanguínea , Hipertensão/metabolismo , Óxido Nítrico/biossíntese , Adulto , Idoso , Arginina/análogos & derivados , Arginina/sangue , Biomarcadores/sangue , População Negra , Espessura Intima-Media Carotídea , Citrulina/sangue , Estudos Transversais , Feminino , Homoarginina/sangue , Humanos , Hipertensão/etnologia , Hipertensão/fisiopatologia , Masculino , Pessoa de Meia-Idade , América do Sul/etnologia , População Branca
18.
Br J Clin Pharmacol ; 82(6): 1477-1485, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27434056

RESUMO

AIMS: Low blood concentrations of the naturally occurring amino acid L-homoarginine (L-hArg) are related to impaired cardiovascular outcome and mortality in humans and animals. L-hArg is a weak substrate of nitric oxide synthase and an inhibitor of arginases in vitro. The aim of our study was to obtain kinetic and dynamic data after oral L-hArg supplementation. METHODS: In a double-blind, randomized, placebo-controlled crossover study, 20 young volunteers received 125 mg L-hArg once daily for 4 weeks. Kinetic parameters (Cmax , Tmax and AUC0-24h ) were calculated after ingestion of single and multiple doses of oral supplementation as primary endpoint. Secondary endpoints that were evaluated were routine laboratory, L-arginine, asymmetric dimethylarginine (ADMA), pulse wave velocity (PWV), augmentation index (AIx), flow-mediated vasodilatation (FMD), corticospinal excitability, i.e. motor threshold (MT), and cortical excitability, i.e. intracortical inhibition (ICI) and facilitation (ICF). RESULTS: One hour after ingestion (Tmax ), L-hArg increased the baseline L-hArg plasma concentration (2.87 ± 0.91 µmol l-1 , mean ± SD) by 8.74 ± 4.46 [95% confidence intervals 6.65; 10.9] and 17.3 ± 4.97 [14.9; 19.6] µmol l-1 (Cmax ), after single and multiple doses, respectively. Once-only and 4 weeks of supplementation resulted in AUCs0-24h of 63.5 ± 28.8 [50.0; 76.9] and 225 ± 78.5 [188; 2624] µmol l-1 *h, for single and multiple doses, respectively. Routine laboratory parameters, L-arginine, ADMA, PWV, AIx, FMD, MT, ICI and ICF did not change by L-hArg supplementation compared to baseline. CONCLUSION: Once daily orally applied 125 mg L-hArg raises plasma L-hArg four- and sevenfold after single dose and 4 weeks of supplementation, respectively, and is safe and well tolerated in young volunteers.


Assuntos
Sistema Cardiovascular/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Homoarginina/sangue , Administração Oral , Adulto , Área Sob a Curva , Estudos Cross-Over , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Método Duplo-Cego , Esquema de Medicação , Feminino , Voluntários Saudáveis , Homoarginina/administração & dosagem , Homoarginina/efeitos adversos , Humanos , Masculino , Adulto Jovem
19.
Clin Chem Lab Med ; 54(7): 1231-7, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26562034

RESUMO

BACKGROUND: Low circulating homoarginine has been associated with adverse cardiovascular (CV) outcome and mortality in patients at risk and in the general population. The present study aimed to define plasma homoarginine reference intervals from a representative population sample to improve risk stratification between healthy individuals and individuals at risk. METHODS: We determined age- and sex-specific reference intervals for circulating plasma homoarginine in a subgroup of 786 healthy participants (no CV disease or risk factors) of the Gutenberg Health Study. Homoarginine concentrations were measured using a validated liquid chromatography-tandem mass spectrometry method. RESULTS: Median EDTA plasma homoarginine concentration was 1.88 [25th; 75th percentile, 1.47; 2.41] µmol/L, with lower concentrations in women (1.77 [1.38; 2.26] µmol/L) than in men (2.01 [1.61; 2.56] µmol/L; p<0.001). Sex-specific 2.5th and 97.5th percentiles of reference intervals were 0.84 and 3.89 µmol/L in women and 0.98 and 4.10 µmol/L in men, respectively. Homoarginine concentrations also depended on age and single nucleotide polymorphisms related to the L-arginine:glycine amidinotransferase gene. CONCLUSIONS: We provide plasma homoarginine reference intervals in men and women of the general population. The determination of homoarginine levels might be favorable for individual risk stratification.


Assuntos
Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/diagnóstico , Homoarginina/sangue , Espectrometria de Massas em Tandem/métodos , Adulto , Idoso , Doenças Cardiovasculares/epidemiologia , Estudos de Casos e Controles , Feminino , Alemanha/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Valores de Referência , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA