Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 16(11): e1008593, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33180834

RESUMO

Despite the existence of a preventive vaccine, chronic infection with Hepatitis B virus (HBV) affects more than 250 million people and represents a major global cause of hepatocellular carcinoma (HCC) worldwide. Current clinical treatments, in most of cases, do not eliminate viral genome that persists as a DNA episome in the nucleus of hepatocytes and constitutes a stable template for the continuous expression of viral genes. Several studies suggest that, among viral factors, the HBV core protein (HBc), well-known for its structural role in the cytoplasm, could have critical regulatory functions in the nucleus of infected hepatocytes. To elucidate these functions, we performed a proteomic analysis of HBc-interacting host-factors in the nucleus of differentiated HepaRG, a surrogate model of human hepatocytes. The HBc interactome was found to consist primarily of RNA-binding proteins (RBPs), which are involved in various aspects of mRNA metabolism. Among them, we focused our studies on SRSF10, a RBP that was previously shown to regulate alternative splicing (AS) in a phosphorylation-dependent manner and to control stress and DNA damage responses, as well as viral replication. Functional studies combining SRSF10 knockdown and a pharmacological inhibitor of SRSF10 phosphorylation (1C8) showed that SRSF10 behaves as a restriction factor that regulates HBV RNAs levels and that its dephosphorylated form is likely responsible for the anti-viral effect. Surprisingly, neither SRSF10 knock-down nor 1C8 treatment modified the splicing of HBV RNAs but rather modulated the level of nascent HBV RNA. Altogether, our work suggests that in the nucleus of infected cells HBc interacts with multiple RBPs that regulate viral RNA metabolism. Our identification of SRSF10 as a new anti-HBV restriction factor offers new perspectives for the development of new host-targeted antiviral strategies.


Assuntos
Carcinoma Hepatocelular/virologia , Proteínas de Ciclo Celular/metabolismo , Vírus da Hepatite B/fisiologia , Hepatite B/virologia , Neoplasias Hepáticas/virologia , Proteínas Repressoras/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Proteínas do Core Viral/metabolismo , Proteínas de Ciclo Celular/genética , Vírus da Hepatite B/genética , Hepatócitos/virologia , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Proteômica , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/genética , Fatores de Processamento de Serina-Arginina/genética , Proteínas do Core Viral/genética , Replicação Viral
2.
J Immunol ; 203(6): 1665-1674, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31434708

RESUMO

EBV infects and immortalizes B cells in vitro and in vivo. It is the causative agent of most immune deficiency-related lymphoproliferative disorders and is associated with various lymphomas. EBV latency III-transformed B cells are known to express two immunosuppressive molecules, IL-10 and PD-L1, two characteristics of regulatory B cells (Bregs). In this study, we show that, in addition to secretion of the Breg immunosuppressive cytokines IL-10, IL-35, and TGF-ß1, EBV latency III-transformed B cells were able to repress proliferation of their autologous T cells preactivated by CD2, CD3, and CD28. This inhibitory effect was likely caused by CD4+ T cells because EBV latency III-transformed B cells induced a strong proliferation of isolated autologous CD8 T cells. Indeed, EBV was able to promote expansion of autologous FOXP3+ CD39high CTLA4+, Helios+, GITR+, LAG3+ CD4 T cells (i.e., regulatory T cells [Tregs]). Two types of Tregs were induced: unconventional CD25neg and conventional CD25pos Tregs. These Tregs expressed both the latency-associated peptide (LAP) and the PD-1 receptor, two markers of functional Tregs. Expansion of both Treg subtypes depended on PD-L1, whose expression was under the control of LMP1, the main EBV oncogene. These results demonstrate that, like Bregs, EBV latency III-transformed B cells exhibit strong immunoregulatory properties. These data provide clues to the understanding of how after EBV primo-infection, EBV-proliferating B cells can survive in an aggressive immunological environment and later emerge to give rise to EBV-associated B cell lymphomas such as in elderly patients.


Assuntos
Linfócitos B/imunologia , Antígeno B7-H1/imunologia , Herpesvirus Humano 4/imunologia , Linfócitos T Reguladores/imunologia , Latência Viral/imunologia , Antígenos CD/imunologia , Apirase/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígeno CTLA-4/imunologia , Linhagem Celular , Fatores de Transcrição Forkhead/imunologia , Proteína Relacionada a TNFR Induzida por Glucocorticoide/imunologia , Humanos , Subunidade alfa de Receptor de Interleucina-2/imunologia
3.
JHEP Rep ; 3(5): 100330, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34409278

RESUMO

BACKGROUND & AIMS: HBV persists in the nucleus of infected hepatocytes as a covalently closed circular DNA (cccDNA) episome that constitutes the template for viral RNA and protein synthesis. Both HBx and HBc (core) viral proteins associate with cccDNA but, while HBx is required for viral transcription, the role of HBc is still unclear. The aim of this study was to determine if HBc derived from incoming nucleocapsid can associate with cccDNA before the onset of viral transcription and protein production. METHODS: Chromatin immunoprecipitation assays were performed in native conditions. In addition, differentiated HepaRG (dHepaRG) cells infected with HBx-deficient HBV were used to investigate if HBc delivered by incoming virions can associate with cccDNA. RESULTS: Our results indicate that HBc can associate with cccDNA in the absence of viral transcription and de novo protein synthesis. In dHepaRG cells, this association is stable for at least 6 weeks. CONCLUSION: These results suggest that virion-delivered HBc may participate at an early stage of cccDNA formation and/or transcription. LAY SUMMARY: The hepatitis B virus genome is released into the nucleoplasm of infected cells after disassembly of the viral nucleocapsids at the nuclear membrane. Herein, we show for the first time that virion-delivered hepatitis B core protein, a component of the viral capsid, can stably associate with integrated viral DNA.

4.
Med Sci (Paris) ; 34(8-9): 693-700, 2018.
Artigo em Francês | MEDLINE | ID: mdl-30230454

RESUMO

Chronic infection by hepatitis B virus (HBV) is a major public health problem with more than 250 millions of people chronically infected worldwide who have a high risk to develop cirrhosis and hepatocellular carcinoma. Available treatments reduce viremia but do not eradicate the virus from hepatocytes. Therefore, there is an urgent need to develop new classes of antiviral molecules and the viral capsid protein, Core, constitutes a new favored target. Core protein Allosteric Modulators (CAMs) targeting its assembly functions are in clinical development. In addition, investigation of Core regulatory functions may lead to the development of compounds targeting cellular factors (HTA) that could be used in combined therapies aiming to achieve a better control of HBV replication.


Assuntos
Pesquisa Biomédica/tendências , Descoberta de Drogas , Vírus da Hepatite B/química , Hepatite B/tratamento farmacológico , Proteínas do Core Viral/fisiologia , Antivirais/isolamento & purificação , Antivirais/uso terapêutico , Descoberta de Drogas/normas , Descoberta de Drogas/tendências , Humanos , Terapia de Alvo Molecular/normas , Terapia de Alvo Molecular/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA