Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 14(42): 8545-8551, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30338335

RESUMO

An elastic bilayer composed of a stiff film bonded to a soft substrate forms wrinkles under compression. While these uniform and periodic wrinkles initially grow in amplitude with applied strain, the onset of secondary bifurcations such as period doubling typically limit the aspect ratio (i.e., amplitude divided by wavelength) of wrinkles that can be achieved. Here, we present a simple strategy that employs a supported bilayer with comparable thicknesses of the film and substrate to achieve wrinkles with higher aspect ratio. We use both experiments and finite element simulations to reveal that at small thickness contrast, period doubling can be delayed, allowing the wrinkles to grow uniformly to high aspect ratio. In addition, we show that the periodic wrinkles can evolve through symmetry breaking and transition to a periodic pattern of ridges with even higher aspect ratio.

2.
Soft Matter ; 10(34): 6520-9, 2014 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-25041764

RESUMO

When a stiff film on a soft substrate is compressed, the surface of the film forms wrinkles, with tunable wavelengths and amplitudes that enable a variety of applications. As the compressive strain increases, the film undergoes post-wrinkling bifurcations, leading to period doubling and eventually to formation of localized folds or ridges. Here we study the post-wrinkling bifurcations in films on pre-stretched substrates. Through a combination of experiments and simulations, we demonstrate that pre-stretched substrates not only show substantial shifts in the critical strain for the onset of post-wrinkling bifurcations, but also exhibit qualitatively different post-wrinkled states. In particular, we report on the stabilization of wrinkles in films on pre-tensioned substrates and the emergence of 'chaotic' morphologies in films on pre-compressed substrates.

3.
ACS Appl Mater Interfaces ; 13(23): 27364-27371, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34077196

RESUMO

Polyimides are widely utilized engineering polymers due to their excellent balance of mechanical, dielectric, and thermal properties. However, the manufacturing of polyimides into complex multifunctional designs can be hindered by dimensional shrinkage of the polymer upon imidization and post processing methods and inability to tailor electronic or mechanical properties. In this work, we developed methods to three-dimensional (3D) direct ink write polyimide closed-cell stochastic foams with tunable densities. These polyimide structures preserve the geometrical fidelity of 3D design with a linear shrinkage value of <10% and displayed microscale porosity ranging from 25 to 35%. This unique balance of morphology and direct-write compatibility was enabled by polymer phase inversion behavior without the need of conventional post-print cross-linking, imidization, or pore-inducing freeze processing. The manufacturability, thermal stability, and dielectric properties of the 3D polyimide stochastic foams reported here serve as enablers for the exploration of hierarchical, lightweight, high-temperature, high-power electronics.

4.
Adv Mater ; 30(35): e1802438, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30009428

RESUMO

Liquid crystalline elastomers (LCEs) are widely recognized for their exceptional promise as actuating materials. Here, the comparatively less celebrated but also compelling nonlinear response of these materials to mechanical load is examined. Prior examinations of planarly aligned LCEs exhibit unidirectional nonlinear deformation to mechanical loads. A methodology is presented to realize surface-templated homeotropic orientation in LCEs and omnidirectional nonlinearity in mechanical deformation. Inkjet printing of the homeotropic alignment surface localizes regions of homeotropic and planar orientation within a monolithic LCE element. The local control of the self-assembly and orientation of the LCE, when subject to rational design, yield functional materials continuous in composition with discontinuous mechanical deformation. The variation in mechanical deformation in the film can enable the realization of nontrivial performance. For example, a patterned LCE is prepared and shown to exhibit a near-zero Poisson's ratio. Further, it is demonstrated that the local control of deformation can enable the fabrication of rugged, flexible electronic devices. An additively manufactured device withstands complex mechanical deformations that would normally cause catastrophic failure.

5.
ACS Appl Mater Interfaces ; 10(1): 1187-1194, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29239172

RESUMO

Liquid crystal elastomers (LCEs) exhibit anisotropic mechanical, thermal, and optical properties. The director orientation within an LCE can be spatially localized into voxels [three-dimensional (3-D) volume elements] via photoalignment surfaces. Here, we prepare nanocomposites in which both the orientation of the LCE and single-walled carbon nanotube (SWNT) are locally and arbitrarily oriented in discrete voxels. The addition of SWNTs increases the stiffness of the LCE in the orientation direction, yielding a material with a 5:1 directional modulus contrast. The inclusion of SWNT modifies the thermomechanical response and, most notably, is shown to enable distinctive electromechanical deformation of the nanocomposite. Specifically, the incorporation of SWNTs sensitizes the LCE to a dc field, enabling uniaxial electrostriction along the orientation direction. We demonstrate that localized orientation of the LCE and SWNT allows complex 3-D shape transformations to be electrically triggered. Initial experiments indicate that the SWNT-polymer interfaces play a crucial role in enabling the electrostriction reported herein.

6.
Nat Commun ; 9(1): 2531, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29955053

RESUMO

Liquid crystalline elastomers (LCEs) are soft, anisotropic materials that exhibit large shape transformations when subjected to various stimuli. Here we demonstrate a facile approach to enhance the out-of-plane work capacity of these materials by an order of magnitude, to nearly 20 J/kg. The enhancement in force output is enabled by the development of a room temperature polymerizable composition used both to prepare individual films, organized via directed self-assembly to retain arrays of topological defect profiles, as well as act as an adhesive to combine the LCE layers. The material actuator is shown to displace a load >2500× heavier than its own weight nearly 0.5 mm.

7.
ACS Macro Lett ; 6(4): 436-441, 2017 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35610852

RESUMO

Polymeric materials are pervasive in modern society, in part attributable to the diverse range of properties that are accessible in these materials. Polymers can be stiff or soft, dissipative or elastic, adhesive or nonstick. Localizing the properties of polymeric materials can be achieved by a number of methods, including self-assembly, lithography, or 3-d printing. Here, we detail recent advances in the preparation of "pixelated" polymers prepared by the directed self-assembly of liquid crystalline monomers to yield cross-linked polymer networks (liquid crystalline polymer networks, LCN, or liquid crystalline elastomers, LCE). Through the local and arbitrary control of the orientation of the liquid crystalline units, monolithic elements can be realized with spatial variation in mechanical, thermal, electrical, optical, or acoustic properties. Stimuli-induced variation of these properties may enable paradigm-shifting end uses in a diverse set of applications.

8.
ACS Macro Lett ; 6(11): 1290-1295, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-35650784

RESUMO

Materials capable of complex shape changes have broad reaching applications spanning biomimetic devices, componentless actuators, artificial muscles, and haptic displays. Liquid crystal elastomers (LCE) are a class of shape programmable materials which display anisotropic mechanical deformations in response external stimuli. This work details a synthetic strategy to quickly and efficiently prepare LCEs through the usage of chain transfer agents (CTA). The polyacrylate materials described herein exhibit large, reversible shape changes with strains greater 475%, rivalling properties observed in polysiloxane-based networks. The approach reported here is distinguished in that the materials chemistry is readily amenable to surface alignment techniques. The facile nature of the materials chemistry and the compatibility of these materials with directed self-assembly methods could further enable paradigm shifting end uses as designer substrates for flexible electronics or as actuating surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA