Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(41): 23643-23654, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34664043

RESUMO

Owing to their intense emission, low toxicity and solubility in aqueous medium, fluorescent organic nanoparticles (FONs) have emerged as promising alternatives to inorganic ones for the realization of exogenous probes for bioimaging applications. However, the intimate structure of FONs in solution, as well as the role played by intermolecular interactions on their optical properties, remains challenging to study. Following a recent Second-Harmonic Scattering (SHS) investigation led by two of us [Daniel et al., ACS Photonics, 2015, 2, 1209], we report herein a computational study of the structural organization and second-order nonlinear optical (NLO) properties of FONs based on dipolar chromophores incorporating a hydrophobic triphenylamine electron-donating unit and a slightly hydrophilic aldehyde electron-withdrawing unit at their extremities. Molecular dynamics simulations of the FON formation in water are associated with quantum chemical calculations, to provide insight into the molecular aggregation process, the molecular orientation of the dipolar dyes within the nanoparticles, and the dynamical behavior of their NLO properties. Moreover, the impact of intermolecular interactions on the NLO responses of the FONs is investigated by employing the tight-binding version of the recently developed simplified time-dependent density functional theory (sTD-DFT) approach, allowing the all-atom quantum mechanics treatment of nanoparticles.

2.
J Chem Phys ; 150(18): 184705, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091912

RESUMO

Clathrate hydrates are crystalline compounds consisting of water molecules forming cages (so-called "host") inside of which "guest" molecules are encapsulated depending on the thermodynamic conditions of formation (systems stable at low temperature and high pressure). These icelike systems are naturally abundant on Earth and are generally expected to exist on icy celestial bodies. Carbon monoxide hydrate might be considered an important component of the carbon cycle in the solar system since CO gas is one of the predominant forms of carbon. Intriguing fundamental properties have also been reported: the CO hydrate initially forms in the sI structure (kinetically favored) and transforms into the sII structure (thermodynamically stable). Understanding and predicting the gas hydrate structural stability then become essential. The aim of this work is, thereby, to study the structural and energetic properties of the CO hydrate using density functional theory (DFT) calculations together with neutron diffraction measurements. In addition to the comparison of DFT-derived structural properties with those from experimental neutron diffraction, the originality of this work lies in the DFT-derived energy calculations performed on a complete unit cell (sI and sII) and not only by considering guest molecules confined in an isolated water cage (as usually performed for extracting the binding energies). Interestingly, an excellent agreement (within less than 1% error) is found between the measured and DFT-derived unit cell parameters by considering the Perdew-Burke-Ernzerhof (denoted PBE) functional. Moreover, a strategy is proposed for evaluating the hydrate structural stability on the basis of potential energy analysis of the total nonbonding energies (i.e., binding energy and water substructure nonbonding energy). It is found that the sII structure is the thermodynamically stable hydrate phase. In addition, increasing the CO content in the large cages has a stabilizing effect on the sII structure, while it destabilizes the sI structure. Such findings are in agreement with the recent experimental results evidencing the structural metastability of the CO hydrate.

3.
J Chem Phys ; 147(13): 134904, 2017 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-28987120

RESUMO

We present a computational approach to model hole transport in an amorphous semiconducting fluorene-triphenylamine copolymer (TFB), which is based on the combination of molecular dynamics to predict the morphology of the oligomeric system and Kinetic Monte Carlo (KMC), parameterized with quantum chemistry calculations, to simulate hole transport. Carrying out a systematic comparison with available experimental results, we discuss the role that different transport parameters play in the KMC simulation and in particular the dynamic nature of positional and energetic disorder on the temperature and electric field dependence of charge mobility. It emerges that a semi-quantitative agreement with experiments is found only when the dynamic nature of the disorder is taken into account. This study establishes a clear link between microscopic quantities and macroscopic hole mobility for TFB and provides substantial evidence of the importance of incorporating fluctuations, at the molecular level, to obtain results that are in good agreement with temperature and electric field-dependent experimental mobilities. Our work makes a step forward towards the application of nanoscale theoretical schemes as a tool for predictive material screening.

4.
Sci Adv ; 1(10): e1501009, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26702443

RESUMO

Even though polycrystalline graphene has shown a surprisingly high tensile strength, the influence of inherent grain boundaries on such property remains unclear. We study the fracture properties of a series of polycrystalline graphene models of increasing thermodynamic stability, as obtained from a long molecular dynamics simulation at an elevated temperature. All of the models show the typical and well-documented brittle fracture behavior of polycrystalline graphene; however, a clear decrease in all fracture properties is observed with increasing annealing time. The remarkably high fracture properties obtained for the most disordered (less annealed) structures arise from the formation of many nonpropagating prefracture cracks, significantly retarding failure. The stability of these reversible cracks is due to the nonlocal character of load transfer after a bond rupture in very disordered systems. It results in an insufficient strain level on neighboring bonds to promote fracture propagation. Although polycrystallinity seems to be an unavoidable feature of chemically synthesized graphenes, these results suggest that targeting highly disordered states might be a convenient way to obtain improved mechanical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA