Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Nature ; 575(7781): 175-179, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31659340

RESUMO

Supramolecular soft crystals are periodic structures that are formed by the hierarchical assembly of complex constituents, and occur in a broad variety of 'soft-matter' systems1. Such soft crystals exhibit many of the basic features (such as three-dimensional lattices and space groups) and properties (such as band structure and wave propagation) of their 'hard-matter' atomic solid counterparts, owing to the generic symmetry-based principles that underlie both2,3. 'Mesoatomic' building blocks of soft-matter crystals consist of groups of molecules, whose sub-unit-cell configurations couple strongly to supra-unit-scale symmetry. As yet, high-fidelity experimental techniques for characterizing the detailed local structure of soft matter and, in particular, for quantifying the effects of multiscale reconfigurability are quite limited. Here, by applying slice-and-view microscopy to reconstruct the micrometre-scale domain morphology of a solution-cast block copolymer double gyroid over large specimen volumes, we unambiguously characterize its supra-unit and sub-unit cell morphology. Our multiscale analysis reveals a qualitative and underappreciated distinction between this double-gyroid soft crystal and hard crystals in terms of their structural relaxations in response to forces-namely a non-affine mode of sub-unit-cell symmetry breaking that is coherently maintained over large multicell dimensions. Subject to inevitable stresses during crystal growth, the relatively soft strut lengths and diameters of the double-gyroid network can easily accommodate deformation, while the angular geometry is stiff, maintaining local correlations even under strong symmetry-breaking distortions. These features contrast sharply with the rigid lengths and bendable angles of hard crystals.

2.
Proc Natl Acad Sci U S A ; 118(11)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33688050

RESUMO

A series of cubic network phases was obtained from the self-assembly of a single-composition lamellae (L)-forming block copolymer (BCP) polystyrene-block-polydimethylsiloxane (PS-b-PDMS) through solution casting using a PS-selective solvent. An unusual network phase in diblock copolymers, double-primitive phase (DP) with space group of [Formula: see text], can be observed. With the reduction of solvent evaporation rate for solution casting, a double-diamond phase (DD) with space group of [Formula: see text] can be formed. By taking advantage of thermal annealing, order-order transitions from the DP and DD phases to a double-gyroid phase (DG) with space group of [Formula: see text] can be identified. The order-order transitions from DP (hexapod network) to DD (tetrapod network), and finally to DG (trigonal planar network) are attributed to the reduction of the degree of packing frustration within the junction (node), different from the predicted Bonnet transformation from DD to DG, and finally to DP based on enthalpic consideration only. This discovery suggests a new methodology to acquire various network phases from a simple diblock system by kinetically controlling self-assembling process.

3.
Environ Sci Technol ; 57(21): 8130-8138, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37194994

RESUMO

The durability of plastics in the marine environment has emerged as a crucial environmental issue. However, the contribution of several factors and the threshold point after which a plastic product generates secondary micro- and nanoplastics is still unclear. To investigate the interaction of environmental parameters with the physicochemical properties of polyethylene (PE) and polypropylene (PP) films in the marine environment, polyolefin films were subjected to weathering in emulated coastal and marine environments for 12 months, focusing on the relationship between radiation load, alteration on the surface, and subsequent generation of microplastics (MPs). The weight average molecular weight (Mw) was found to be strongly correlated with the generated particles and the Feret diameter, implying the generation of secondary microplastics at decreased Mw. A significant and strong relationship between the carbonyl index (CI) and the Feret diameter for PP films weathered on beach sand was identified. This CI-fragmentation relationship involves three sequential stages and suggests that spontaneous fragmentation occurs at CI values above 0.7.


Assuntos
Plásticos , Poluentes Químicos da Água , Plásticos/química , Microplásticos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Polipropilenos
4.
Molecules ; 28(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37959837

RESUMO

Biomass exploitation is a global trend due to the circular economy and the environmentally friendly spirit. Numerous applications are now based on the use of biomass-derived products. Hydrogen sulfide (H2S) is a highly toxic and environmentally hazardous gas which is emitted from various processes. Thus, the efficient removal of this toxic hazardous gas following cost-effective processes is an essential requirement. In this study, we present the synthesis and characterization of biomass-derived activated carbon/zinc oxide (ZnO@AC) composites from different biomass sources as potential candidates for H2S sorption. The synthesis involved a facile method for activated carbon production via pyrolysis and chemical activation of biomass precursors (spent coffee, Aloe-Vera waste leaves, and corncob). Activated carbon production was followed by the incorporation of zinc oxide nanoparticles into the porous carbon matrix using a simple melt impregnation method. The synthesized ZnO@AC composites were characterized using X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and nitrogen porosimetry. The H2S removal performance of the ZnO@AC composites was evaluated through sorption experiments using a handmade apparatus. Our findings demonstrate that the Aloe-Vera-, spent coffee-, and corncob-derived composites exhibit superior H2S sorption capacity up to 106 mgH2S/gads., 66 mgH2S/gads., and 47 mgH2S/gads., respectively.

5.
Molecules ; 27(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35209022

RESUMO

Today, the use of natural biodegradable materials in the production processes is more and more adopted by industry to achieve cyclic economy targets and to improve environmental and human health indexes. Active packaging is the latest trend for food preservation. In this work, nanostructures were prepared by incorporation of thyme oil with natural natrium-montmorillonite and organo-montmorillonite with two different techniques, direct impregnation and the green evaporation-adsorption process. Such nanostructures were mixed with poly-L-lactic-acid for the first time via an extrusion molding process to develop a new packaging film. Comparisons of morphological, mechanical, and other basic properties for food packaging were carried out via XRD, FTIR, TG, SEM/EDS, oxygen and water vapor permeation, and antimicrobial and antioxidant activity for the first time. Results showed that poly-L-lactic-acid could be modified with clays and essential oils to produce improved active packaging films. The final product exhibits food odor prevention characteristics and shelf-life extension capabilities, and it could be used for active packaging. The films based on OrgMt clay seems to be more promising, while the thyme oil addition improves their behavior as active packaging. The PLLA/3%TO@OrgMt and PLLA/5%TO@OrgMt films were qualified between the tested samples as the most promising materials for this purpose.


Assuntos
Antioxidantes/química , Bentonita/química , Embalagem de Alimentos , Membranas Artificiais , Nanoestruturas/química , Óleos de Plantas/química , Poliésteres/química , Sódio/química , Timol/química , Thymus (Planta)/química , Anti-Infecciosos , Fenômenos Químicos , Fenômenos Mecânicos , Nanoestruturas/ultraestrutura , Análise Espectral
6.
Molecules ; 26(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805641

RESUMO

An innovative process for the adsorption of the hydrophobic Basil-Oil (BO) into the hydrophilic food byproduct chitosan (CS) and the development of an advanced low-density polyethylene/chitosan/basil-oil (LDPE/CS_BO) active packaging film was investigated in this work. The idea of this study was the use of the BO as both a bioactive agent and a compatibilizer. The CS was modified to a CS_BO hydrophobic blend via a green evaporation/adsorption process. This blend was incorporated directly in the LDPE to produce films with advanced properties. All the obtained composite films exhibited improved packaging properties. The film with 10% CS_BO content exhibited the best packaging properties, i.e., 33.0% higher tensile stress, 31.0% higher water barrier, 54.3% higher oxygen barrier, and 12.3% higher antioxidant activity values compared to the corresponding values of the LDPE films. The lipid oxidation values of chicken breast fillets which were packaged under vacuum using this film were measured after seven and after fourteen days of storage. These values were found to be lower by around 41% and 45%, respectively, compared with the corresponding lipid oxidation values of pure LDPE film.


Assuntos
Galinhas , Quitosana , Embalagem de Alimentos/métodos , Óleos de Plantas , Polietileno , Animais , Antioxidantes/química , Plásticos Biodegradáveis/química , Varredura Diferencial de Calorimetria , Quitosana/química , Análise de Alimentos , Conservação de Alimentos/métodos , Tecnologia de Alimentos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Peroxidação de Lipídeos , Microscopia Eletrônica de Varredura , Ocimum , Permeabilidade , Óleos de Plantas/química , Polietileno/química , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Termogravimetria , Fatores de Tempo , Difração de Raios X
7.
Molecules ; 26(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805728

RESUMO

Hypergolic systems rely on organic fuel and a powerful oxidizer that spontaneously ignites upon contact without any external ignition source. Although their main utilization pertains to rocket fuels and propellants, it is only recently that hypergolics has been established from our group as a new general method for the synthesis of different morphologies of carbon nanostructures depending on the hypergolic pair (organic fuel-oxidizer). In search of new pairs, the hypergolic mixture described here contains polyaniline as the organic source of carbon and fuming nitric acid as strong oxidizer. Specifically, the two reagents react rapidly and spontaneously upon contact at ambient conditions to afford carbon nanosheets. Further liquid-phase exfoliation of the nanosheets in dimethylformamide results in dispersed single layers exhibiting strong Tyndall effect. The method can be extended to other conductive polymers, such as polythiophene and polypyrrole, leading to the formation of different type carbon nanostructures (e.g., photolumincent carbon dots). Apart from being a new synthesis pathway towards carbon nanomaterials and a new type of reaction for conductive polymers, the present hypergolic pairs also provide a novel set of rocket bipropellants based on conductive polymers.

8.
Chemistry ; 26(29): 6643-6651, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32057153

RESUMO

Nanoscale two-dimensional nanostructures have shown great potential as functional components in photocatalysis. Here, investigations on the synthesis of heterostructured hybrids, comprised of 0D CdS nanoparticles as semiconductor and 2D/2D graphene/MoSx as co-catalyst, are reported. The approach involves a rapid microwave-assisted reaction in autoclave conditions, by adopting either a one-step or a two-step protocol. The chemical speciation of the nanocomposites was found to depend strongly on the compounding conditions of the precursor substances. The photocatalytic activity was assessed by monitoring the photodegradation rate of 4-nitrophenol in solution using simulated solar light irradiation. The photocatalytic activity of the hybrids may be attributed to a combination of beneficial characteristics, strongly related to the chemical speciation of the composite components. Moreover, intimate contacts of the latter result in efficient heterojunctions. Overall, the present study provides valuable insight into the development of functional heterostructured photocatalysts comprised of two-dimensional nanomaterials.

9.
Molecules ; 25(2)2020 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31940837

RESUMO

We exploited a classic chemistry demonstration experiment based on the reaction of acetylene with chlorine to obtain highly crystalline graphite at ambient conditions. Acetylene and chlorine were generated in-situ by the addition of calcium carbide (CaC2) in a concentrated HCl solution, followed by the quick addition of domestic bleach (NaClO). The released gases reacted spontaneously, giving bursts of yellow flame, leaving highly crystalline graphite deposits in the aqueous phase. This was a rather benign alternative towards synthetic graphite, the latter usually being prepared at high temperatures. The synthetic graphite was further utilized to obtain graphene or conductive inks.


Assuntos
Acetileno/química , Cloro/química , Grafite/síntese química , Cristalização , Grafite/química , Microscopia de Força Atômica , Espectroscopia Fotoeletrônica , Análise Espectral Raman , Difração de Raios X
10.
Molecules ; 25(9)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397274

RESUMO

Recently we have highlighted the importance of hypergolic reactions in carbon materials synthesis. In an effort to expand this topic with additional new paradigms, herein we present novel preparations of carbon nanomaterials, such-like carbon nanosheets and fullerols (hydroxylated fullerenes), through spontaneous ignition of coffee-sodium peroxide (Na2O2) and C60-Na2O2 hypergolic mixtures, respectively. In these cases, coffee and fullerenes played the role of the combustible fuel, whereas sodium peroxide the role of the strong oxidizer (e.g., source of highly concentrated H2O2). The involved reactions are both thermodynamically and kinetically favoured, thus allowing rapid product formation at ambient conditions. In addition, we provide tips on how to exploit the released energy of such highly exothermic reactions in the generation of useful work.


Assuntos
Fulerenos/química , Oxirredução , Peróxidos/química
11.
Molecules ; 25(24)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352785

RESUMO

To the best of our knowledge, this is the very first time that a thorough study of the synthetic procedures, molecular and thermal characterization, followed by structure/properties relationship for symmetric and non-symmetric second generation (2-G) dendritic terpolymers is reported. Actually, the synthesis of the non-symmetric materials is reported for the first time in the literature. Anionic polymerization enables the synthesis of well-defined polymers that, despite the architecture complexity, absolute control over the average molecular weight, as well as block composition, is achieved. The dendritic type macromolecular architecture affects the microphase separation, because different morphologies are obtained, which do not exhibit long range order, and various defects or dislocations are evident attributed to the increased number of junction points of the final material despite the satisfactory thermal annealing at temperatures above the highest glass transition temperature of all blocks. For comparison reasons, the initial dendrons (miktoarm star terpolymer precursors) which are connected to each other in order to synthesize the final dendritic terpolymers are characterized in solution and in bulk and their self-assembly is also studied. A major conclusion is that specific structures are adopted which depend on the type of the core connection between the ligand and the active sites of the dendrons.


Assuntos
Dendrímeros/química , Polímeros/química , Polimerização , Temperatura
12.
Molecules ; 25(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255708

RESUMO

The synthesis of two (2) novel triblock terpolymers of the ABC type and one (1) of the BAC type, where A, B and C are chemically different segments, such as polystyrene (PS), poly(butadiene) (PB1,4) and poly(dimethylsiloxane) (PDMS), is reported; moreover, their corresponding molecular and bulk characterizations were performed. Very low dimensions are evident from the characterization in bulk from transmission electron microscopy studies, verified by small-angle X-ray data, since sub-16 nm domains are evident in all three cases. The self-assembly results justify the assumptions that the high Flory-Huggins parameter, χ, even in low molecular weights, leads to significantly well-ordered structures, despite the complexity of the systems studied. Furthermore, it is the first time that a structure/properties relationship was studied for such systems in bulk, potentially leading to prominent applications in nanotechnology and nanopatterning, for as low as sub-10 nm thin-film manipulations.


Assuntos
Peso Molecular , Polimerização , Polímeros/química , Ânions/química , Microscopia Eletrônica de Transmissão , Análise Espectral , Temperatura
13.
Small ; 14(16): e1704005, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29573555

RESUMO

Exploring the ordering mechanism and dynamics of self-assembled block copolymer (BCP) thin films under confined conditions are highly essential in the application of BCP lithography. In this study, it is aimed to examine the self-assembling mechanism and kinetics of silicon-containing 3-arm star-block copolymer composed of polystyrene (PS) and poly(dimethylsiloxane) blocks as nanostructured thin films with perpendicular cylinders and controlled lateral ordering by directed self-assembly using topographically patterned substrates. The ordering process of the star-block copolymer within fabricated topographic patterns with PS-functionalized sidewall can be carried out through the type of secondary (i.e., heterogeneous) nucleation for microphase separation initiated from the edge and/or corner of the topographic patterns, and directed to grow as well-ordered hexagonally packed perpendicular cylinders. The growth rate for the confined microphase separation is highly dependent upon the dimension and also the geometric texture of the preformed pattern. Fast self-assembly for ordering of BCP thin film can be achieved by lowering the confinement dimension and also increasing the concern number of the preformed pattern, providing a new strategy for the design of BCP lithography from the integration of top-down and bottom-up approaches.

14.
Transfusion ; 58(1): 34-40, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29063631

RESUMO

BACKGROUND: Previous investigations in leukoreduced units of red blood cells (RBCs) in mannitol additive solution revealed the close association of uric acid (UA) levels in vivo with the susceptibility of RBCs to storage lesion markers. In this study, we examined whether UA has a similar correlation with the capability of RBCs to cope with the oxidative provocations of storage under different conditions, namely, in CPDA-1 and in the absence of leukoreduction. STUDY DESIGN AND METHODS: The UA-dependent antioxidant capacity of the supernatant was measured in nonleukoreduced units of RBCs in CPDA (n = 47). The possible effect of UA variability on the storage lesion profile was assessed by monitoring several physiologic properties of RBCs and supernatant, including cell shape, reactive oxygen species, and size distribution of extracellular vesicles, in units exhibiting the lowest or highest levels of UA activity (n = 16) among donors, throughout the storage period. RESULTS: In stored RBC units, the UA-dependent antioxidant activity of the supernatant declined as a function of storage duration but always in strong relation to the UA levels in fresh blood. Contrary to units of poor-UA activity, RBCs with the highest levels of UA activity exhibited better profile of calcium- and oxidative stress-driven modifications, including a significant decrease in the percentages of spherocytes and of 100- to 300-nm-sized vesicles, typically associated with the exovesiculation of stored RBCs. CONCLUSION: The antioxidant activity of UA is associated with donor-specific differences in the performance of RBCs under storage in nonleukoreduced CPDA units.


Assuntos
Doadores de Sangue , Preservação de Sangue/métodos , Eritrócitos/citologia , Ácido Úrico/sangue , Adenina/farmacologia , Adolescente , Adulto , Antioxidantes/análise , Biomarcadores , Cálcio/sangue , Citratos/farmacologia , Difusão Dinâmica da Luz , Eritrócitos/efeitos dos fármacos , Eritrócitos Anormais/ultraestrutura , Vesículas Extracelulares/ultraestrutura , Glucose/farmacologia , Hemólise , Humanos , Masculino , Manitol/farmacologia , Estresse Oxidativo , Fosfatos/farmacologia , Espécies Reativas de Oxigênio , Adulto Jovem
15.
Nanotechnology ; 29(27): 275302, 2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29633719

RESUMO

Dense arrays of pillars, with diameters of 64 and 25 nm, were made from a perpendicular CoFeB magnetic tunnel junction thin film stack using block copolymer lithography. While the soft layer and hard layer in the 64 nm pillars reverse at different fields, the reversal of the two layers in the 25 nm pillars could not be distinguished, attributed to the strong interlayer magnetostatic coupling. First-order reversal curves were used to identify the steps that occur during switching, and the thermal stability and effective switching volume were determined from scan rate dependent hysteresis measurements.

16.
Macromol Rapid Commun ; 39(5)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29251388

RESUMO

The efficient synthesis of a new solution-processable n-type conjugated polymer network (PNT1) is reported through palladium-catalyzed Stille cross-coupling reaction conditions following the A3 + B2 synthetic approach. A benzo[1,2-b:3,4-b':5,6-b″]trithiophene derivative is used as the A3 knot and an alkyl functionalized naphthalenediimide is utilized as the B2 linker. The thermal, optical, and electrochemical properties are examined in detail, showing high thermal stability, absorbance in the visible part of the solar spectrum, and reversible reduction characteristics similar to those of the fullerene derivative [6,6]-phenyl-C71 -butyric acid methyl ester (PC71 BM). PNT1 is employed as the electron acceptor in solution-processed bulk heterojunction organic solar cells, demonstrating the potential of this new type of materials for optoelectronic applications.


Assuntos
Fontes de Energia Elétrica , Luz , Polímeros/química , Soluções/química , Imidas/química , Microscopia de Força Atômica , Modelos Químicos , Estrutura Molecular , Naftalenos/química , Polímeros/síntese química , Energia Solar , Espectrofotometria , Temperatura , Tiofenos/química
17.
J Chem Phys ; 149(12): 124902, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30278667

RESUMO

A series of nine (9) donor-acceptor-donor (DAD) π-conjugated small molecules were synthesized via palladium catalyzed Stille aromatic cross-coupling reactions by the combination of six (6) heterocycle building blocks (thiophene, furan, thiazole, 2,1,3-benzothiadiazole, 2,1,3-pyridinothiadiazole, thienothiadiazole) acting as electron donating (thiazole, furan, thiophene) and electron deficient (benzothiadiazole, pyridinethiadiazole, thienothiadiazole) units. These model compounds enable determining the correspondence between the theoretical and experimental optical and electrochemical properties for the first time, via Density Functional Theory (DFT), time-dependent DFT, UV-Vis spectroscopy, and cyclic voltammetry, accordingly. The obtained theoretical models can be utilized for the design and synthesis of new DAD structures with precise optical bandgaps, absorption maxima, and energy levels suitable for different optoelectronic applications.

18.
Nanotechnology ; 28(14): 145301, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28221161

RESUMO

The self-assembly of block copolymers with large feature sizes is inherently challenging as the large kinetic barrier arising from chain entanglement of high molecular weight (MW) polymers limits the extent over which long-range ordered microdomains can be achieved. Here, we illustrate the evolution of thin film morphology from a diblock copolymer of polystyrene-block-poly(dimethylsiloxane) exhibiting total number average MW of 123 kg mol-1, and demonstrate the formation of layers of well-ordered cylindrical microdomains under appropriate conditions of binary solvent mix ratio, commensurate film thickness, and solvent vapor annealing time. Directed self-assembly of the block copolymer within lithographically patterned trenches occurs with alignment of cylinders parallel to the sidewalls. Fabrication of ordered cobalt nanowire arrays by pattern transfer was also implemented, and their magnetic properties and domain wall behavior were characterized.

19.
Nanotechnology ; 28(4): 044001, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-27981945

RESUMO

Poly(styrene)-block-poly(dimethylsiloxane) (PS-b-PDMS) is an excellent block copolymer (BCP) system for self-assembly and inorganic template fabrication because of its high Flory-Huggins parameter (χ âˆ¼ 0.26) at room temperature in comparison to other BCPs, and high selective etch contrast between PS and PDMS block for nanopatterning. In this work, self-assembly in PS-b-PDMS BCP is achieved by combining hydroxyl-terminated poly(dimethylsiloxane) (PDMS-OH) brush surfaces with solvent vapor annealing. As an alternative to standard brush chemistry, we report a simple method based on the use of surfaces functionalized with silane-based self-assembled monolayers (SAMs). A solution-based approach to SAM formation was adopted in this investigation. The influence of the SAM-modified surfaces upon BCP films was compared with polymer brush-based surfaces. The cylinder forming PS-b-PDMS BCP and PDMS-OH polymer brush were synthesized by sequential living anionic polymerization. It was observed that silane SAMs provided the appropriate surface chemistry which, when combined with solvent annealing, led to microphase segregation in the BCP. It was also demonstrated that orientation of the PDMS cylinders may be controlled by judicious choice of the appropriate silane. The PDMS patterns were successfully used as an on-chip etch mask to transfer the BCP pattern to underlying silicon substrate with sub-25 nm silicon nanoscale features. This alternative SAM/BCP approach to nanopattern formation shows promising results, pertinent in the field of nanotechnology, and with much potential for application, such as in the fabrication of nanoimprint lithography stamps, nanofluidic devices or in narrow and multilevel interconnected lines.

20.
Macromol Rapid Commun ; 38(2)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27918651

RESUMO

Systematic optimization of the chemical structure of wide-bandgap (≈2.0 eV) "donor-acceptor" copolymers consisting of indacenodithiophene or indacenodithieno[3,2-b]thiophene as the electron-rich unit and thieno[3,4-c]pyrrole-4,6-dione as the electron-deficient moiety in terms of alkyl side chain engineering and distance of the electron-rich and electron-deficient monomers within the repeat unit of the polymer chain results in high-performance electron donor materials for organic photovoltaics. Specifically, preliminary results demonstrate extremely high open circuit voltages (V oc s) of ≈1.0 V, reasonable short circuit current density (J sc ) of around 11 mA cm-2 , and moderate fill factors resulting in efficiencies close to 6%. All the devices are fabricated in an inverted architecture with the photoactive layer processed by doctor blade equipment, showing the compatibility with roll-to-roll large-scale manufacturing processes. From the correlation of the chemical structure-optoelectronic properties-photovoltaic performance, a rational guide toward further optimization of the chemical structure in this family of copolymers, has been achieved.


Assuntos
Técnicas Eletroquímicas , Elétrons , Polímeros/síntese química , Semicondutores , Estrutura Molecular , Processos Fotoquímicos , Polímeros/química , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA