Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomech Eng ; 146(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38319186

RESUMO

Subject-specific computational modeling of vocal fold (VF) vibration was integrated with an ex vivo animal experiment of type 1 thyroplasty to study the effect of the implant on the vocal fold vibration. In the experiment, a rabbit larynx was used to simulate type 1 thyroplasty, where one side of the vocal fold was medialized with a trans-muscular suture while the other side was medialized with a silastic implant. Vocal fold vibration was then achieved by flowing air through the larynx and was filmed with a high-speed camera. The three-dimensional computational model was built upon the pre-operative scan of the laryngeal anatomy. This subject-specific model was used to simulate the vocal fold medialization and then the fluid-structure interaction (FSI) of the vocal fold. Model validation was done by comparing the vocal fold displacement with postoperative scan (for medialization), and by comparing the vibratory characteristics with the high-speed images (for vibration). These comparisons showed the computational model successfully captured the effect of the implant and thus has the potential for presurgical planning.


Assuntos
Laringoplastia , Laringe , Paralisia das Pregas Vocais , Coelhos , Animais , Prega Vocal , Laringoplastia/métodos , Paralisia das Pregas Vocais/cirurgia , Vibração , Laringe/cirurgia
2.
Fluids (Basel) ; 7(3)2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35480340

RESUMO

A full three-dimensional (3D) fluid-structure interaction (FSI) study of subject-specific vocal fold vibration is carried out based on the previously reconstructed vocal fold models of rabbit larynges. Our primary focuses are the vibration characteristics of the vocal fold, the unsteady 3D flow field, and comparison with a recently developed 1D glottal flow model that incorporates machine learning. The 3D FSI model applies strong coupling between the finite-element model for the vocal fold tissue and the incompressible Navier-Stokes equation for the flow. Five different samples of the rabbit larynx, reconstructed from the magnetic resonance imaging (MRI) scans after the in vivo phonation experiments, are used in the FSI simulation. These samples have distinct geometries and a different inlet pressure measured in the experiment. Furthermore, the material properties of the vocal fold tissue were determined previously for each individual sample. The results demonstrate that the vibration and the intraglottal pressure from the 3D flow simulation agree well with those from the 1D flow model based simulation. Further 3D analyses show that the inferior and supraglottal geometries play significant roles in the FSI process. Similarity of the flow pattern with the human vocal fold is discussed. This study supports the effective usage of rabbit larynges to understand human phonation and will help guide our future computational studies that address vocal fold disorders.

3.
Appl Sci (Basel) ; 11(4)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-34671486

RESUMO

We have developed a novel surgical/computational model for the investigation of unilateral vocal fold paralysis (UVFP) which will be used to inform future in silico approaches to improve surgical outcomes in type I thyroplasty. Healthy phonation (HP) was achieved using cricothyroid suture approximation on both sides of the larynx to generate symmetrical vocal fold closure. Following high-speed videoendoscopy (HSV) capture, sutures on the right side of the larynx were removed, partially releasing tension unilaterally and generating asymmetric vocal fold closure characteristic of UVFP (sUVFP condition). HSV revealed symmetric vibration in HP, while in sUVFP the sutured side demonstrated a higher frequency (10 - 11%). For the computational model, ex vivo magnetic resonance imaging (MRI) scans were captured at three configurations: non-approximated (NA), HP, and sUVFP. A finite-element method (FEM) model was built, in which cartilage displacements from the MRI images were used to prescribe the adduction and the vocal fold deformation was simulated before the eigenmode calculation. The results showed that the frequency comparison between the two sides were consistent with observations from HSV. This alignment between the surgical and computational models supports the future application of these methods for the investigation of treatment for UVFP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA