Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1131: 489-504, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31646522

RESUMO

Store-Operated Ca2+ Entry (SOCE) is an important Ca2+ influx pathway expressed by several excitable and non-excitable cell types. SOCE is recognized as relevant signaling pathway not only for physiological process, but also for its involvement in different pathologies. In fact, independent studies demonstrated the implication of essential protein regulating SOCE, such as STIM, Orai and TRPCs, in different pathogenesis and cell disorders, including cardiovascular disease, muscular dystrophies and angiogenesis. Compelling evidence showed that dysregulation in the function and/or expression of isoforms of STIM, Orai or TRPC play pivotal roles in cardiac hypertrophy and heart failure, vascular remodeling and hypertension, skeletal myopathies, and angiogenesis. In this chapter, we summarized the current knowledge concerning the mechanisms underlying abnormal SOCE and its involvement in some diseases, as well as, we discussed the significance of STIM, Orai and TRPC isoforms as possible therapeutic targets for the treatment of angiogenesis, cardiovascular and skeletal muscle diseases.


Assuntos
Cálcio , Doenças Cardiovasculares , Doenças Musculares , Neovascularização Patológica , Cálcio/metabolismo , Canais de Cálcio , Sinalização do Cálcio , Doenças Cardiovasculares/fisiopatologia , Humanos , Transporte de Íons , Doenças Musculares/fisiopatologia , Neovascularização Patológica/fisiopatologia
2.
J Biol Chem ; 291(40): 21148-21159, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27535226

RESUMO

Voltage-dependent CaV1.2 L-type Ca2+ channels (LTCC) are the main route for calcium entry in vascular smooth muscle cells (VSMC). Several studies have also determined the relevant role of store-operated Ca2+ channels (SOCC) in vascular tone regulation. Nevertheless, the role of Orai1- and TRPC1-dependent SOCC in vascular tone regulation and their possible interaction with CaV1.2 are still unknown. The current study sought to characterize the co-activation of SOCC and LTCC upon stimulation by agonists, and to determine the possible crosstalk between Orai1, TRPC1, and CaV1.2. Aorta rings and isolated VSMC obtained from wild type or smooth muscle-selective conditional CaV1.2 knock-out (CaV1.2KO) mice were used to study vascular contractility, intracellular Ca2+ mobilization, and distribution of ion channels. We found that serotonin (5-HT) or store depletion with thapsigargin (TG) enhanced intracellular free Ca2+ concentration ([Ca2+]i) and stimulated aorta contraction. These responses were sensitive to LTCC and SOCC inhibitors. Also, 5-HT- and TG-induced responses were significantly attenuated in CaV1.2KO mice. Furthermore, hyperpolarization induced with cromakalim or valinomycin significantly reduced both 5-HT and TG responses, whereas these responses were enhanced with LTCC agonist Bay-K-8644. Interestingly, in situ proximity ligation assay revealed that CaV1.2 interacts with Orai1 and TRPC1 in untreated VSMC. These interactions enhanced significantly after stimulation of cells with 5-HT and TG. Therefore, these data indicate for the first time a functional interaction between Orai1, TRPC1, and CaV1.2 channels in VSMC, confirming that upon agonist stimulation, vessel contraction involves Ca2+ entry due to co-activation of Orai1- and TRPC1-dependent SOCC and LTCC.


Assuntos
Aorta/metabolismo , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/fisiologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteína ORAI1/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Aorta/citologia , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Camundongos , Camundongos Knockout , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Proteína ORAI1/genética , Serotonina/metabolismo , Canais de Cátion TRPC/genética , Vasoconstrição/fisiologia
3.
Adv Exp Med Biol ; 898: 111-31, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27161227

RESUMO

Activation of phospholipases A2 (PLA2) leads to the generation of biologically active lipid products that can affect numerous cellular events. Ca(2+)-independent PLA2 (iPLA2), also called group VI phospholipase A2, is one of the main types forming the superfamily of PLA2. Beside of its role in phospholipid remodeling, iPLA2 has been involved in intracellular Ca(2+) homeostasis regulation. Several studies proposed iPLA2 as an essential molecular player of store operated Ca(2+) entry (SOCE) in a large number of excitable and non-excitable cells. iPLA2 activation releases lysophosphatidyl products, which were suggested as agonists of store operated calcium channels (SOCC) and other TRP channels. Herein, we will review the important role of iPLA2 on the intracellular Ca(2+) handling focusing on its role in SOCE regulation and its implication in physiological and/or pathological processes.


Assuntos
Cálcio/metabolismo , Fosfolipases A2/metabolismo , Sinalização do Cálcio , Humanos , Proteínas Sensoras de Cálcio Intracelular , Transporte de Íons , Proteínas de Membrana/metabolismo
4.
Cell Calcium ; 86: 102157, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31926404

RESUMO

Ischemia and Reperfusion (I/R) injuries are associated with coronary artery hypercontracture. They are mainly originated by an exacerbated response to agonists released by endothelium such as Endothelin (ET-1), involving the alteration in intracellular calcium handling. Recent evidences have highlighted the implication of Store-Operated Calcium Channels (SOCC) in intracellular calcium homeostasis in coronary artery. However, little is known about the role of SOCC in the regulation of coronary vascular tone under I/R. The aim of this study was to evaluate the role of SOCC and l-type Ca2+ channels (LTCC) in coronary artery vasoconstriction originated by ET-1 in I/R. We used Left Anterior Descendent coronary artery (LAD) rings, isolated from Wistar rats, to study the contractility and intracellular Ca2+ concentration ([Ca2+]i) under a simulated I/R protocol. We observed that responses to high-KCL induced depolarization and caffeine-induced Ca2+ release are attenuated in coronary artery under I/R. Furthermore, ET-1 addition in ischemia promotes transient and small rise of [Ca2+]i and coronary vascular tone. Meanwhile, these effects are significantly potentiated during reperfusion. The resulting ET-1-induced vasoconstrictions and [Ca2+]i increase were abolished by; GSK-7975A and gadolinium, inhibitors of SOCC; and nifedipine a widely used inhibitor of LTCC. Interestingly, using in situ Proximity Ligation Assay (PLA) in isolated coronary smooth muscle cells we found significant colocalization of LTCC CaV1.2 isoform with Orai1, the pore forming subunit of SOCC, and TRPC1 under I/R. Our data suggest that hypercontraction of coronary artery induced by ET-1 after I/R involves the co-activation of LTCC and SOCC, which colocalize significantly in the sarcolemma of coronary smooth muscle cells.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Endotelina-1/metabolismo , Contração Muscular , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Proteína ORAI1/metabolismo , Animais , Cálcio/metabolismo , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/fisiopatologia , Contração Isométrica/efeitos dos fármacos , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Nifedipino/farmacologia , Potássio/farmacologia , Ratos Wistar , Canais de Cátion TRPC/metabolismo
5.
Curr Med Chem ; 26(22): 4166-4177, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-28545369

RESUMO

The pathophysiology linking diabetes and cardiovascular disease (CVD) is complex and multifactorial. The specific type of cardiomyopathy associated with diabetes, known as diabetic cardiomyopathy (DCM), is recognized as asymptomatic progression of structural and functional remodeling in the heart of diabetic patients in the absence of coronary atherosclerosis and hypertension. In other words, the presence of heart disease specifically in diabetic patients is also known as diabetic heart disease. This article reviews the impact of diabetes in heart and vascular beds focusing on molecular mechanisms involving the oxidative stress, the inflammation, the endothelium dysfunction and the alteration of the homeostasis of calcium, among others mechanisms. Understanding these mechanisms will help identify and treat CVD in patients with diabetes, as well as to plan efficient strategies to mitigate DCM impact in those patients.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/metabolismo , Cardiomiopatias Diabéticas/complicações , Cardiomiopatias Diabéticas/metabolismo , Animais , Doenças Cardiovasculares/patologia , Cardiomiopatias Diabéticas/patologia , Humanos , Estresse Oxidativo
6.
Front Physiol ; 9: 257, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29618985

RESUMO

Cardiac, skeletal, and smooth muscle cells shared the common feature of contraction in response to different stimuli. Agonist-induced muscle's contraction is triggered by a cytosolic free Ca2+ concentration increase due to a rapid Ca2+ release from intracellular stores and a transmembrane Ca2+ influx, mainly through L-type Ca2+ channels. Compelling evidences have demonstrated that Ca2+ might also enter through other cationic channels such as Store-Operated Ca2+ Channels (SOCCs), involved in several physiological functions and pathological conditions. The opening of SOCCs is regulated by the filling state of the intracellular Ca2+ store, the sarcoplasmic reticulum, which communicates to the plasma membrane channels through the Stromal Interaction Molecule 1/2 (STIM1/2) protein. In muscle cells, SOCCs can be mainly non-selective cation channels formed by Orai1 and other members of the Transient Receptor Potential-Canonical (TRPC) channels family, as well as highly selective Ca2+ Release-Activated Ca2+ (CRAC) channels, formed exclusively by subunits of Orai proteins likely organized in macromolecular complexes. This review summarizes the current knowledge of the complex role of Store Operated Calcium Entry (SOCE) pathways and related proteins in the function of cardiac, skeletal, and vascular smooth muscle cells.

7.
Front Physiol ; 9: 813, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30018568

RESUMO

Aims: Urocortin-2 (Ucn-2) is a potent cardioprotector against Ischemia and Reperfusion (I/R) injuries. However, little is known about its role in the regulation of intracellular Ca2+ concentration ([Ca2+]i) under I/R. Here, we examined whether the addition of Ucn-2 in reperfusion promotes cardioprotection focusing on ([Ca2+]i handling. Methods and Results: Cardiac Wistar rat model of I/R was induced by transient ligation of the left coronary artery and experiments were conducted 1 week after surgery in tissue and adult cardiomyocytes isolated from risk and remote zones. We observed that I/R promoted significant alteration in cardiac contractility as well as an increase in hypertrophy and fibrosis in both zones. The study of confocal [Ca2+]i imaging in adult cardiomyocytes revealed that I/R decreased the amplitude of [Ca2+]i transient and cardiomyocytes contraction in risk and remote zones. Interestingly, intravenous infusion of Ucn-2 before heart's reperfusion recovered significantly cardiac contractility and prevented fibrosis, but it didn't affect cardiac hypertrophy. Moreover, Ucn-2 recovered the amplitude of [Ca2+]i transient and modulated the expression of several proteins related to [Ca2+]i homeostasis, such as TRPC5 and Orai1 channels. Using Neonatal Rat Ventricular Myocytes (NRVM) we demonstrated that Ucn-2 blunted I/R-induced Store Operated Ca2+ Entry (SOCE), decreased the expression of TRPC5 and Orai1 as well as their interaction in reperfusion. Conclusion: Our study provides the first evidences demonstrating that Ucn-2 addition at the onset of reperfusion attenuates I/R-induced adverse cardiac remodeling, involving the [Ca2+]i handling and inhibiting the expression and interaction between TRPC5 and Orai1.

8.
Sci Rep ; 7(1): 8898, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827743

RESUMO

Urocortin 1 and 2 (Ucn-1 and Ucn-2) have established protective actions against myocardial ischemia-reperfusion (I/R) injuries. However, little is known about their role in posttranscriptional regulation in the process of cardioprotection. Herein, we investigated whether microRNAs play a role in urocortin-induced cardioprotection. Administration of Ucn-1 and Ucn-2 at the beginning of reperfusion significantly restored cardiac function, as evidenced ex vivo in Langendorff-perfused rat hearts and in vivo in rat subjected to I/R. Experiments using microarray and qRT-PCR determined that the addition of Ucn-1 at reperfusion modulated the expression of several miRNAs with unknown role in cardiac protection. Ucn-1 enhanced the expression of miR-125a-3p, miR-324-3p; meanwhile it decreased miR-139-3p. Similarly, intravenous infusion of Ucn-2 in rat model of I/R mimicked the effect of Ucn-1 on miR-324-3p and miR-139-3p. The effect of Ucn-1 involves the activation of corticotropin-releasing factor receptor-2, Epac2 and ERK1/2. Moreover, the overexpression of miR-125a-3p, miR-324-3p and miR-139-3p promoted dysregulation of genes expression involved in cell death and apoptosis (BRCA1, BIM, STAT2), in cAMP and Ca2+ signaling (PDE4a, CASQ1), in cell stress (NFAT5, XBP1, MAP3K12) and in metabolism (CPT2, FoxO1, MTRF1, TAZ). Altogether, these data unveil a novel role of urocortin in myocardial protection, involving posttranscriptional regulation with miRNAs.


Assuntos
MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Urocortinas/metabolismo , Animais , Biomarcadores , Cardiotônicos/farmacologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Hemodinâmica , Masculino , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/metabolismo , Interferência de RNA , Ratos , Urocortinas/farmacologia
9.
Cardiovasc Res ; 100(2): 297-306, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23933581

RESUMO

AIMS: Urotensin-II (UII) is a vasoactive peptide that promotes vascular smooth muscle cells (VSMCs) proliferation and is involved in the pathogenesis of atherosclerosis, restenosis, and vascular remodelling. This study aimed to determine the role of calcium (Ca(2+))-dependent signalling and alternative signalling pathways in UII-evoked VSMCs proliferation focusing on store-operated Ca(2+) entry (SOCE) and epithelium growth factor receptor (EGFR) transactivation. METHODS AND RESULTS: We used primary cultures of VSMCs isolated from Wistar rat aorta to investigate the effects of UII on intracellular Ca(2+) mobilization, and proliferation determined by the 5-bromo-2-deoxyuridine (BrdU) assay. We found that UII enhanced intracellular Ca(2+) concentration ([Ca(2+)]i) which was significantly reduced by classical SOCE inhibitors and by knockdown of essential components of the SOCE such as stromal interaction molecule 1 (STIM1), Orai1, or TRPC1. Moreover, UII activated a Gd(3+)-sensitive current with similar features of the Ca(2+) release-activated Ca(2+) current (ICRAC). Additionally, UII stimulated VSMCs proliferation and Ca(2+)/cAMP response element-binding protein (CREB) activation through the SOCE pathway that involved STIM1, Orai1, and TRPC1. Co-immunoprecipitation experiments showed that UII promoted the association between Orai1 and STIM1, and between Orai1 and TRPC1. Moreover, we determined that EGFR transactivation, extracellular signal-regulated kinase (ERK) and Ca(2+)/calmodulin-dependent kinase (CaMK) signalling pathways were involved in both UII-mediated Ca(2+) influx, CREB activation and VSMCs proliferation. CONCLUSION: Our data show for the first time that UII-induced VSMCs proliferation and CREB activation requires a complex signalling pathway that involves on the one hand SOCE mediated by STIM1, Orai1, and TRPC1, and on the other hand EGFR, ERK, and CaMK activation.


Assuntos
Cálcio/metabolismo , Receptores ErbB/genética , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/fisiologia , Ativação Transcricional , Urotensinas/farmacologia , Animais , Canais de Cálcio/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Proliferação de Células/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Masculino , Glicoproteínas de Membrana/fisiologia , Proteína ORAI1 , Fosforilação , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais , Molécula 1 de Interação Estromal , Canais de Cátion TRPC/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA