Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Nephrol ; 55(3): 369-379, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38377965

RESUMO

INTRODUCTION: Chronic kidney disease (CKD) negatively affects musculoskeletal health, leading to reduced mobility, and quality of life. In healthy populations, carnitine supplementation and aerobic exercise have been reported to improve musculoskeletal health. However, there are inconclusive results regarding their effectiveness and safety in CKD. We hypothesized that carnitine supplementation and individualized treadmill exercise would improve musculoskeletal health in CKD. METHODS: We used a spontaneously progressive CKD rat model (Cy/+ rat) (n = 11-12/gr): (1) Cy/+ (CKD-Ctrl), (2) CKD-carnitine (CKD-Carn), and (3) CKD-treadmill (CKD-TM). Carnitine (250 mg/kg) was injected daily for 10 weeks. Rats in the treadmill group ran 4 days/week on a 5° incline for 10 weeks progressing from 30 min/day for week one to 40 min/day for week two to 50 min/day for the remaining 8 weeks. At 32 weeks of age, we assessed overall cardiopulmonary fitness, muscle function, bone histology and architecture, and kidney function. Data were analyzed by one-way ANOVA with Tukey's multiple comparisons tests. RESULTS: Moderate to severe CKD was confirmed by biochemistries for blood urea nitrogen (mean 43 ± 5 mg/dL CKD-Ctrl), phosphorus (mean 8 ± 1 mg/dL CKD-Ctrl), parathyroid hormone (PTH; mean 625 ± 185 pg/mL CKD-Ctrl), and serum creatinine (mean 1.1 ± 0.2 mg/mL CKD-Ctrl). Carnitine worsened phosphorous (mean 11 ± 3 mg/dL CKD-Carn; p < 0.0001), PTH (mean 1,738 ± 1,233 pg/mL CKD-Carn; p < 0.0001), creatinine (mean 1 ± 0.3 mg/dL CKD-Carn; p < 0.0001), cortical bone thickness (mean 0.5 ± 0.1 mm CKD-Ctrl, 0.4 ± 0.1 mm CKD-Carn; p < 0.05). Treadmill running significantly improves maximal aerobic capacity when compared to CKD-Ctrl (mean 14 ± 2 min CKD-TM, 10 ± 2 min CKD-Ctrl; p < 0.01). CONCLUSION: Carnitine supplementation worsened CKD progression, mineral metabolism biochemistries, and cortical porosity and did not have an impact on physical function. Individualized treadmill running improved maximal aerobic capacity but did not have an impact on CKD progression or bone properties. Future studies should seek to better understand carnitine doses in conditions of compromised renal function to prevent toxicity which may result from elevated carnitine levels and to optimize exercise prescriptions for musculoskeletal health.


Assuntos
Carnitina , Suplementos Nutricionais , Condicionamento Físico Animal , Insuficiência Renal Crônica , Carnitina/administração & dosagem , Animais , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/sangue , Ratos , Masculino , Hormônio Paratireóideo/sangue , Modelos Animais de Doenças , Músculo Esquelético/efeitos dos fármacos , Aptidão Cardiorrespiratória , Fósforo/sangue , Creatinina/sangue
2.
Nephrol Dial Transplant ; 37(10): 1857-1867, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-35482713

RESUMO

BACKGROUND: Anemia and chronic kidney disease-mineral and bone disorder (CKD-MBD) are common and begin early in CKD. Limited studies have concurrently compared the effects of ferric citrate (FC) versus intravenous (IV) iron on CKD-MBD and iron homeostasis in moderate CKD. METHODS: We tested the effects of 10 weeks of 2% FC versus IV iron sucrose in rats with moderate CKD (Cy/+ male rat) and untreated normal (NL) littermates. Outcomes included a comprehensive assessment of CKD-MBD, iron homeostasis and oxidative stress. RESULTS: CKD rats had azotemia, elevated phosphorus, parathyroid hormone and fibroblast growth factor-23 (FGF23). Compared with untreated CKD rats, treatment with FC led to lower plasma phosphorus, intact FGF23 and a trend (P = 0.07) toward lower C-terminal FGF23. FC and IV iron equally reduced aorta and heart calcifications to levels similar to NL animals. Compared with NL animals, CKD animals had higher bone turnover, lower trabecular volume and no difference in mineralization; these were unaffected by either iron treatment. Rats treated with IV iron had cortical and bone mechanical properties similar to NL animals. FC increased the transferrin saturation rate compared with untreated CKD and NL rats. Neither iron treatment increased oxidative stress above that of untreated CKD. CONCLUSIONS: Oral FC improved phosphorus homeostasis, some iron-related parameters and the production and cleavage of FGF23. The intermittent effect of low-dose IV iron sucrose on cardiovascular calcification and bone should be further explored in moderate-advanced CKD.


Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica , Insuficiência Renal Crônica , Animais , Biomarcadores , Distúrbio Mineral e Ósseo na Doença Renal Crônica/tratamento farmacológico , Distúrbio Mineral e Ósseo na Doença Renal Crônica/etiologia , Compostos Férricos , Óxido de Ferro Sacarado , Fatores de Crescimento de Fibroblastos/metabolismo , Homeostase , Ferro/uso terapêutico , Masculino , Minerais , Hormônio Paratireóideo , Fósforo , Ratos , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Transferrinas/uso terapêutico
3.
Curr Osteoporos Rep ; 20(6): 410-421, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36149594

RESUMO

PURPOSE OF REVIEW: To provide an overview of the recent literature investigating the pathophysiology of skeletal muscle changes, interventions for skeletal muscle, and effects of exercise in chronic kidney disease (CKD). RECENT FINDINGS: There are multiple CKD-related changes that negatively impact muscle size and function. However, the variability in the assessment of muscle size, in particular, hinders the ability to truly understand the impact it may have in CKD. Exercise interventions to improve muscle size and function demonstrate inconsistent responses that warrant further investigation to optimize exercise prescription. Despite progress in the field, there are many gaps in the knowledge of the pathophysiology of sarcopenia of CKD. Identifying these gaps will help in the design of interventions that can be tested to target muscle loss and its consequences such as impaired mobility, falls, and poor quality of life in patients with CKD.


Assuntos
Insuficiência Renal Crônica , Sarcopenia , Humanos , Qualidade de Vida , Músculo Esquelético , Insuficiência Renal Crônica/complicações , Exercício Físico
4.
J Ren Nutr ; 32(4): 441-449, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34393071

RESUMO

OBJECTIVE: Impairment in physical function and physical performance leads to decreased independence and health-related quality of life in people living with chronic kidney disease and end-stage kidney disease. Physical activity and exercise in kidney care are not priorities in policy development. We aimed to identify global policy-related enablers, barriers, and strategies to increase exercise participation and physical activity behavior for people living with kidney disease. DESIGN AND METHODS: Guided by the Behavior Change Wheel theoretical framework, 50 global renal exercise experts developed policy barriers and enablers to exercise program implementation and physical activity promotion in kidney care. The consensus process consisted of developing themes from renal experts from North America, South America, Continental Europe, United Kingdom, Asia, and Oceania. Strategies to address enablers and barriers were identified by the group, and consensus was achieved. RESULTS: We found that policies addressing funding, service provision, legislation, regulations, guidelines, the environment, communication, and marketing are required to support people with kidney disease to be physically active, participate in exercise, and improve health-related quality of life. We provide a global perspective and highlight Japanese, Canadian, and other regional examples where policies have been developed to increase renal physical activity and rehabilitation. We present recommendations targeting multiple stakeholders including nephrologists, nurses, allied health clinicians, organizations providing renal care and education, and renal program funders. CONCLUSIONS: We strongly recommend the nephrology community and people living with kidney disease take action to change policy now, rather than idly waiting for indisputable clinical trial evidence that increasing physical activity, strength, fitness, and function improves the lives of people living with kidney disease.


Assuntos
Exercício Físico , Qualidade de Vida , Canadá , Humanos , Rim , Políticas
5.
Am J Nephrol ; 51(9): 705-714, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32781443

RESUMO

BACKGROUND: Impaired mobility is associated with functional dependence, frailty, and mortality in prevalent patients undergoing dialysis. We investigated risk factors for mobility impairment, (poor gait speed) in patients incident to dialysis, and changes in gait speed over time in a 2-year longitudinal study. METHODS: One hundred eighty-three patients enrolled within 6 months of dialysis initiation were followed up 6, 12, and 24 months later. Grip strength, health-related quality of life, and comorbidities were assessed at baseline. Outcomes were (a) baseline gait speed and (b) change in gait speed over time. Gait speed was assessed by 4-meter walk. Multivariate linear regression was used to identify risk factors for low gait speed at baseline. For longitudinal analyses, linear mixed effects modeling with gait speed modeled over time was used as the outcome. RESULTS: Participants were 54.7 ± 12.8 years old, 52.5% men, 73.9% black with mean dialysis vintage of 100.1 ± 46.9 days and median gait speed 0.78 (0.64-0.094) m/s. Lower health utility and grip strength, diabetic nephropathy, and walking aids were associated with lower baseline gait speed. Loss of 0.1 m/s gait speed occurred in 24% of subjects at 1 year. In multivariate mixed effects models, only age, walking aid use, lower health utility, and lower handgrip strength were significantly associated with gait speed loss. CONCLUSIONS: In our cohort of incident dialysis patients, overall gait speed is very low and 54.2% of the subjects continue to lose gait speed over 2 years. Older age, lower handgrip strength, and quality of life are risk factors for slowness. Patients at highest risk of poor gait speed can be identified at dialysis initiation to allow targeted implementation of therapeutic options.


Assuntos
Fragilidade/diagnóstico , Qualidade de Vida , Diálise Renal/efeitos adversos , Insuficiência Renal Crônica/terapia , Velocidade de Caminhada/fisiologia , Adulto , Fatores Etários , Idoso , Progressão da Doença , Feminino , Seguimentos , Fragilidade/epidemiologia , Fragilidade/etiologia , Fragilidade/fisiopatologia , Força da Mão/fisiologia , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/fisiopatologia , Fatores de Risco
6.
J Am Soc Nephrol ; 30(10): 1898-1909, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31501355

RESUMO

BACKGROUND: Reduced bone and muscle health in individuals with CKD contributes to their higher rates of morbidity and mortality. METHODS: We tested the hypothesis that voluntary wheel running would improve musculoskeletal health in a CKD rat model. Rats with spontaneous progressive cystic kidney disease (Cy/+ IU) and normal littermates (NL) were given access to a voluntary running wheel or standard cage conditions for 10 weeks starting at 25 weeks of age when the rats with kidney disease had reached stage 2-3 of CKD. We then measured the effects of wheel running on serum biochemistry, tissue weight, voluntary grip strength, maximal aerobic capacity (VO2max), body composition and bone micro-CT and mechanics. RESULTS: Wheel running improved serum biochemistry with decreased creatinine, phosphorous, and parathyroid hormone in the rats with CKD. It improved muscle strength, increased time-to-fatigue (for VO2max), reduced cortical porosity and improved bone microarchitecture. The CKD rats with voluntary wheel access also had reduced kidney cystic weight and reduced left ventricular mass index. CONCLUSIONS: Voluntary wheel running resulted in multiple beneficial systemic effects in rats with CKD and improved their physical function. Studies examining exercise interventions in patients with CKD are warranted.


Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica/terapia , Atividade Motora , Animais , Modelos Animais de Doenças , Feminino , Masculino , Ratos
7.
Am J Physiol Endocrinol Metab ; 315(4): E594-E604, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29558205

RESUMO

Skeletal muscle dysfunction accompanies the clinical disorders of chronic kidney disease (CKD) and hereditary hypophosphatemic rickets. In both disorders, fibroblast growth factor 23 (FGF23), a bone-derived hormone regulating phosphate and vitamin D metabolism, becomes chronically elevated. FGF23 has been shown to play a direct role in cardiac muscle dysfunction; however, it is unknown whether FGF23 signaling can also directly induce skeletal muscle dysfunction. We found expression of potential FGF23 receptors ( Fgfr1-4) and α-Klotho in muscles of two animal models (CD-1 and Cy/+ rat, a naturally occurring rat model of chronic kidney disease-mineral bone disorder) as well as C2C12 myoblasts and myotubes. C2C12 proliferation, myogenic gene expression, oxidative stress marker 8-OHdG, intracellular Ca2+ ([Ca2+]i), and ex vivo contractility of extensor digitorum longus (EDL) or soleus muscles were assessed after treatment with various amounts of FGF23. FGF23 (2-100 ng/ml) did not alter C2C12 proliferation, expression of myogenic genes, or oxidative stress after 24- to 72-h treatment. Acute or prolonged FGF23 treatment up to 6 days did not alter C2C12 [Ca2+]i handling, nor did acute treatment with FGF23 (9-100 ng/ml) affect EDL and soleus muscle contractility. In conclusion, although skeletal muscles express the receptors involved in FGF23-mediated signaling, in vitro FGF23 treatments failed to directly alter skeletal muscle development or function under the conditions tested. We hypothesize that other endogenous substances may be required to act in concert with FGF23 or apart from FGF23 to promote muscle dysfunction in hereditary hypophosphatemic rickets and CKD.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Distúrbio Mineral e Ósseo na Doença Renal Crônica/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Contração Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , 8-Hidroxi-2'-Desoxiguanosina , Animais , Cálcio/metabolismo , Linhagem Celular , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Fator de Crescimento de Fibroblastos 23 , Expressão Gênica , Camundongos , Desenvolvimento Muscular/genética , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Músculo Esquelético/metabolismo , Mioblastos/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos
8.
Stem Cells ; 35(5): 1303-1315, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28299842

RESUMO

Electroacupuncture (EA) performed in rats and humans using limb acupuncture sites, LI-4 and LI-11, and GV-14 and GV-20 (humans) and Bai-hui (rats) increased functional connectivity between the anterior hypothalamus and the amygdala and mobilized mesenchymal stem cells (MSCs) into the systemic circulation. In human subjects, the source of the MSC was found to be primarily adipose tissue, whereas in rodents the tissue sources were considered more heterogeneous. Pharmacological disinhibition of rat hypothalamus enhanced sympathetic nervous system (SNS) activation and similarly resulted in a release of MSC into the circulation. EA-mediated SNS activation was further supported by browning of white adipose tissue in rats. EA treatment of rats undergoing partial rupture of the Achilles tendon resulted in reduced mechanical hyperalgesia, increased serum interleukin-10 levels and tendon remodeling, effects blocked in propranolol-treated rodents. To distinguish the afferent role of the peripheral nervous system, phosphoinositide-interacting regulator of transient receptor potential channels (Pirt)-GCaMP3 (genetically encoded calcium sensor) mice were treated with EA acupuncture points, ST-36 and LIV-3, and GV-14 and Bai-hui and resulted in a rapid activation of primary sensory neurons. EA activated sensory ganglia and SNS centers to mediate the release of MSC that can enhance tissue repair, increase anti-inflammatory cytokine production and provide pronounced analgesic relief. Stem Cells 2017;35:1303-1315.


Assuntos
Sistema Nervoso Central/citologia , Eletroacupuntura , Células-Tronco Mesenquimais/citologia , Tendão do Calcâneo/patologia , Pontos de Acupuntura , Adipócitos/citologia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Branco/citologia , Animais , Antígenos CD/metabolismo , Membro Anterior/fisiologia , Membro Posterior/fisiologia , Humanos , Hiperalgesia/terapia , Hipotálamo/citologia , Interleucina-10/sangue , Macrófagos/citologia , Camundongos , Rede Nervosa/fisiologia , Ratos , Ruptura , Células Receptoras Sensoriais/metabolismo , Proteína Desacopladora 1/metabolismo
9.
Curr Opin Nephrol Hypertens ; 26(3): 219-228, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28198733

RESUMO

PURPOSE OF REVIEW: In this article, we review sarcopenia in chronic kidney disease (CKD). We aim to present how definitions of sarcopenia from the general population may pertain to those with CKD, its assessment by clinicians and emerging therapies for sarcopenia in CKD. For this review, we limit our description and recommendations to patients with CKD who are not on dialysis. RECENT FINDINGS: Poorer parameters of lean mass, strength and physical function are associated with worsening patient-centered outcomes such as limiting mobility, falls and mortality in CKD; however, the magnitude of these associations are different in those with and without CKD. Sarcopenia in CKD is a balance between skeletal muscle regeneration and catabolism, which are both altered in the uremic environment. Multiple pathways are involved in these derangements, which are briefly reviewed. Differences between commonly used terms cachexia, frailty, protein-energy wasting, dynapenia and sarcopenia are described. Therapeutic options in predialysis CKD are not well studied; therefore, we review exercise options and emerging pharmacological therapies. SUMMARY: Sarcopenia, now with its own International Classification of Diseases, 10th Revision (ICD-10) code, is of importance clinically and should be accounted for in research studies in patients with CKD. Multiple therapies for sarcopenia are in development and will hopefully be available for our patients in the future.


Assuntos
Músculo Esquelético/fisiopatologia , Insuficiência Renal Crônica/fisiopatologia , Sarcopenia/fisiopatologia , Sarcopenia/terapia , Terminologia como Assunto , Exercício Físico , Humanos , Insuficiência Renal Crônica/complicações , Sarcopenia/complicações
10.
Nephrol Dial Transplant ; 31(2): 223-30, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26442903

RESUMO

BACKGROUND: The combination of skeletal muscle wasting and compromised function plays a role in the health decline commonly observed in chronic kidney disease (CKD) patients, but the pathophysiology of muscle mass/strength changes remains unclear. The purpose of this study was to characterize muscle properties in the Cy/+ rat model of spontaneously progressive CKD. METHODS: Leg muscle function and serum biochemistry of male Cy/+ (CKD) rats and their nonaffected littermates (NLs) were assessed in vivo at 25, 30 and 35 weeks of age. Architecture and histology of extensor digitorum longus (EDL) and soleus (SOL) muscles were assessed ex vivo at the conclusion of the experiment. We tested the hypothesis that animals with CKD have progressive loss of muscle function, and that this functional deficit is associated with loss of muscle mass and quality. RESULTS: Thirty-five-week-old CKD rats produced significantly lower maximum torque in ankle dorsiflexion and shorter time to maximum torque, and longer half relaxation time in dorsiflexion and plantarflexion compared with NL rats. Peak dorsiflexion torque (but not plantarflexion torque) in CKD remained steady from 25 to 35 weeks, while in NL rats, peak torque increased. Mass, physiologic cross-sectional area (CSA) and fiber-type (myosin heavy chain isoform) proportions of EDL and SOL were not different between CKD and NL. However, the EDL of CKD rats showed reduced CSAs in all fiber types, while only MyHC-1 fibers were decreased in area in the SOL. CONCLUSIONS: The results of this study demonstrate that muscle function progressively declines in the Cy/+ rat model of CKD. Because whole muscle mass and architecture do not vary between CKD and NL, but CKD muscles show reduction in individual fiber CSA, our data suggest that the functional decline is related to increased muscle fiber atrophy.


Assuntos
Contração Muscular , Músculo Esquelético/fisiopatologia , Atrofia Muscular , Cadeias Pesadas de Miosina/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Imuno-Histoquímica , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/prevenção & controle , Ratos , Ratos Sprague-Dawley , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/metabolismo
11.
Curr Osteoporos Rep ; 13(3): 173-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25691218

RESUMO

Chronic kidney disease (CKD) is associated with a decline in muscle mass, strength, and function, collectively called "sarcopenia." Sarcopenia is associated with hospitalizations and mortality in CKD and is therefore important to understand and characterize. While the focus of skeletal health in CKD has traditionally focused on bone and mineral aberrations, it is now recognized that sarcopenia must also play a role in poor musculoskeletal health in this population. In this paper, we present an overview of skeletal muscle changes in CKD, including defects in skeletal muscle catabolism and anabolism in uremic tissue. There are many gaps in knowledge in this field that should be the focus for future research to unravel pathogenesis and therapies for musculoskeletal health in CKD.


Assuntos
Osso e Ossos/fisiopatologia , Músculo Esquelético/fisiopatologia , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/fisiopatologia , Sarcopenia/etiologia , Acidentes por Quedas/prevenção & controle , Animais , Avaliação da Deficiência , Modelos Animais de Doenças , Fraturas Ósseas/prevenção & controle , Humanos , Desenvolvimento Muscular/fisiologia , Miostatina/fisiologia , Sarcopenia/fisiopatologia
12.
Curr Osteoporos Rep ; 13(1): 1-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25515697

RESUMO

There is growing interest in the interaction between skeletal muscle and bone, particularly at the genetic and molecular levels. However, the genetic and molecular linkages between muscle and bone are achieved only within the context of the essential mechanical coupling of the tissues. This biomechanical and physiological linkage is readily evident as muscles attach to bone and induce exposure to varied mechanical stimuli via functional activity. The responsiveness of bone cells to mechanical stimuli, or their absence, is well established. However, questions remain regarding how muscle forces applied to bone serve to modulate bone homeostasis and adaptation. Similarly, the contributions of varied, but unique, stimuli generated by muscle to bone (such as low-magnitude, high-frequency stimuli) remains to be established. The current article focuses upon the mechanical relationship between muscle and bone. In doing so, we explore the stimuli that muscle imparts upon bone, models that enable investigation of this relationship, and recent data generated by these models.


Assuntos
Fenômenos Biomecânicos/fisiologia , Osso e Ossos/fisiologia , Músculo Esquelético/fisiologia , Humanos
13.
J Clin Densitom ; 18(4): 551-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25454307

RESUMO

Peripheral quantitative computed tomography (pQCT) is a popular tool for noninvasively estimating bone mechanical properties. Previous studies have demonstrated that pQCT provides precise estimates that are good predictors of actual bone mechanical properties at popular distal imaging sites (tibia and radius). The predictive ability and precision of pQCT at more proximal sites remain unknown. The aim of the present study was to explore the predictive ability and short-term precision of pQCT estimates of mechanical properties of the midshaft humerus, a site gaining popularity for exploring the skeletal benefits of exercise. Predictive ability was determined ex vivo by assessing the ability of pQCT-derived estimates of torsional mechanical properties in cadaver humeri (density-weighted polar moment of inertia [I(P)] and polar strength-strain index [SSI(P)]) to predict actual torsional properties. Short-term precision was assessed in vivo by performing 6 repeat pQCT scans at the level of the midshaft humerus in 30 young, healthy individuals (degrees of freedom = 150), with repeat scans performed by the same and different testers and on the same and different days to explore the influences of different testers and time between repeat scans on precision errors. IP and SSI(P) both independently predicted at least 90% of the variance in ex vivo midshaft humerus mechanical properties in cadaveric bones. Overall values for relative precision error (root mean squared coefficients of variation) for in vivo measures of IP and SSI(P) at the midshaft humerus were <1.5% and were not influenced by pQCT assessments being performed by different testers or on different days. These data indicate that pQCT provides very good prediction of midshaft humerus mechanical properties with good short-term precision, with measures being robust against the influences of different testers and time between repeat scans.


Assuntos
Úmero/fisiologia , Tomografia Computadorizada por Raios X/métodos , Idoso , Antropometria , Cadáver , Diáfises/diagnóstico por imagem , Diáfises/fisiologia , Feminino , Humanos , Úmero/diagnóstico por imagem , Masculino , Estresse Mecânico
14.
J Cachexia Sarcopenia Muscle ; 15(1): 21-35, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38062879

RESUMO

Patients with chronic kidney disease (CKD) are often regarded as experiencing wasting of muscle mass and declining muscle strength and function, collectively termed sarcopenia. The extent of skeletal muscle wasting in clinical and preclinical CKD populations is unclear. We evaluated skeletal muscle atrophy in preclinical and clinical models of CKD, with multiple sub-analyses for muscle mass assessment methods, CKD severity, sex and across the different preclinical models of CKD. We performed a systematic literature review of clinical and preclinical studies that measured muscle mass/size using the following databases: Ovid Medline, Embase and Scopus. A random effects meta-analysis was utilized to determine standard mean difference (SMD; Hedges' g) between healthy and CKD. Heterogeneity was evaluated using the I2 statistic. Preclinical study quality was assessed via the Systematic Review Centre for Laboratory Animal Experimentation and clinical studies quality was assessed via the Newcastle-Ottawa Scale. This study was registered in PROSPERO (CRD42020180737) prior to initiation of the search. A total of 111 studies were included in this analysis using the following subgroups: 106 studies in the primary CKD analysis, 18 studies that accounted for diabetes and 7 kidney transplant studies. Significant atrophy was demonstrated in 78% of the preclinical studies and 49% of the clinical studies. The random effects model demonstrated a medium overall SMD (SMD = 0.58, 95% CI = 0.52-0.64) when combining clinical and preclinical studies, a medium SMD for the clinical population (SMD = 0.48, 95% CI = 0.42-0.55; all stages) and a large SMD for preclinical CKD (SMD = 0.95, 95% CI = 0.76-1.14). Further sub-analyses were performed based upon assessment methods, disease status and animal model. Muscle atrophy was reported in 49% of the clinical studies, paired with small mean differences. Preclinical studies reported significant atrophy in 78% of studies, with large mean differences. Across multiple clinical sub-analyses such as severity of CKD, dialysis modality and diabetes, a medium mean difference was found. Sub-analyses in both clinical and preclinical studies found a large mean difference for males and medium for females suggesting sex-specific implications. Muscle atrophy differences varied based upon assessment method for clinical and preclinical studies. Limitations in study design prevented conclusions to be made about the extent of muscle loss with disease progression, or the impact of dialysis. Future work would benefit from the use of standardized measurement methods and consistent clinical staging to improve our understanding of atrophy changes in CKD progression, and analysis of biological sex differences.


Assuntos
Diabetes Mellitus , Insuficiência Renal Crônica , Humanos , Feminino , Masculino , Atrofia Muscular/etiologia , Diálise Renal , Músculo Esquelético/fisiologia
15.
Sci Rep ; 14(1): 8427, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600145

RESUMO

Impaired physical function contributes to falls, fractures, and mortality among patients undergoing dialysis. Using a metabolomic approach, we identified metabolite alterations and effect size-based composite scores for constructs of impaired gait speed and grip strength. 108 participants incident to dialysis had targeted plasma metabolomics via liquid chromatography-mass spectrometry and physical function assessed (i.e., 4 m walk, handgrip strength). Physical function measures were categorized as above/ below median, with grip utilizing sex-based medians. To develop composite scores, metabolites were identified via Wilcoxon uncorrected p < 0.05 and effect size > 0.40. Receiver operating characteristic analyses tested whether scores differentiated between above/below function groups. Participants were 54% male, 77% Black and 53 ± 14 y with dialysis vintage of 101 ± 50 days. Median (IQR) grip strength was 35.5 (11.1) kg (males) and 20 (8.4) kg (females); median gait speed was 0.82 (0.34) m/s. Of 246 measured metabolites, composite scores were composed of 22 and 12 metabolites for grip strength and gait speed, respectively. Area under the curve for metabolite composite was 0.88 (gait) and 0.911 (grip). Composite scores of physical function performed better than clinical parameters alone in patients on dialysis. These results provide potential pathways for interventions and needed validation in an independent cohort.


Assuntos
Força da Mão , Diálise Renal , Feminino , Humanos , Masculino , Marcha , Caminhada , Velocidade de Caminhada
16.
Muscle Nerve ; 48(4): 578-85, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24037745

RESUMO

INTRODUCTION: We examined generalized versus joint-specific influences on muscle coactivation. METHODS: Muscle coactivation was assessed during maximal isometric and isokinetic knee and elbow joint extension moments in 48 healthy subjects (27 men). Local (joint-specific) and generalized (person-specific) contributions were examined using a combination of statistical tests, including regression with generalized estimating equations (GEEs), exploratory factor analysis, and cluster analysis. RESULTS: GEEs produced similar significant coefficients for gender and joint; contraction type and test condition (angle or velocity) were not significant. Factor analysis indicated 2 joint-based factors, and cluster analysis indicated 2 groups of individuals, those with and without elevated coactivation at the knee and elbow. Women exhibited greater coactivation at both joints, but no consistent influences of angle or velocity were observed at either joint. CONCLUSION: Muscle coactivation is a neuromuscular control response determined by local, joint-specific, and generalized, individual-specific influences.


Assuntos
Cotovelo/fisiologia , Eletromiografia/métodos , Joelho/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Amplitude de Movimento Articular/fisiologia , Adulto , Eletromiografia/instrumentação , Feminino , Humanos , Masculino , Exercícios de Alongamento Muscular/instrumentação , Exercícios de Alongamento Muscular/métodos , Fatores Sexuais , Adulto Jovem
17.
Sci Rep ; 13(1): 21158, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036596

RESUMO

Epidemiological studies have reported a strong association between circulating Klotho and physical function; however, the cohorts were comprised of older adults with multiple comorbidities. Herein, we examined the relationship between Klotho and physical function in a community-based cohort of healthy adults. In this cross-sectional study, serum Klotho was measured in 80 adults who visited the Musculoskeletal Function, Imaging, and Tissue Resource Core of the Indiana Center for Musculoskeletal Health. Participants (n = 20, 10 [50%] men per group) were chosen into four age groups: 20-34, 35-49, 50-64, and ≥ 65 years, and were further grouped based on performance (low vs. high) on grip strength and chair stand tests. Klotho levels were lower in the ≥ 65 years group (703.0 [189.3] pg/mL; p = 0.022) and the 50-64 years group (722.6 [190.5] pg/mL; p = 0.045) compared to 20-34 years (916.1 [284.8] pg/mL). No differences were observed in Klotho between the low and high performers. The ≥ 65 years group walked a shorter distance during the 6-min walk test (6MWT) compared to 20-34 years (p = 0.005). Klotho was correlated with age (p < 0.001), body fat (p = 0.037), and 6MWT distance (p = 0.022). Klotho levels decline as early as the fifth decade of life, potentially before the onset of age-related impairment in exercise capacity.


Assuntos
Glucuronidase , Envelhecimento Saudável , Adulto , Idoso , Feminino , Humanos , Masculino , Adulto Jovem , Estudos Transversais , Força da Mão , Caminhada
18.
J Orthop Res ; 41(5): 1060-1069, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36200412

RESUMO

Nonunion describes bone fractures that fail to heal, resulting in the fracture callus failing to fully ossify or, in atrophic cases, not forming altogether. Fracture healing is regulated, in part, by the balance of proinflammatory and anti-inflammatory processes occurring within the bone marrow and surface cell populations. We sought to further understand the role of osteoimmunology (i.e., study of the close relationship between the immune system and bone) by examining immune cell gene expression via single-cell RNA sequencing of intramedullary canal tissue obtained from human patients with femoral nonunions. Intramedullary canal tissue samples obtained by reaming were collected at the time of surgical repair for femur fracture nonunion (n = 5) or from native bone controls when harvesting autologous bone graft (n = 4). Cells within the samples were isolated and analyzed using the Chromium Single-Cell System (10x Genomics Inc.) and Illumina sequencers. Twenty-three distinct cell clusters were identified, with higher cell proportions in the nonunion samples for monocytes and CD14 + dendritic cells (DCs), and lower proportions of T cells, myelocytes, and promyelocytes in nonunion samples. Gene expression differences were identified in each of the cell clusters from cell types associated with osteoimmunology, including CD14 + DC, monocytes, T cells, promyelocytes, and myelocytes. These results provide human-derived gene profiles that can further our understanding of pathways that may be a cause or a consequence of nonunion, providing the clinical rationale to focus on specific components of osteoimmunology. Clinical significance: The novel single-cell approach may lead to clinically relevant diagnostic biomarkers during earlier stages of nonunion development and/or investigation into therapeutic options.


Assuntos
Fraturas do Fêmur , Fraturas não Consolidadas , Humanos , Análise da Expressão Gênica de Célula Única , Calo Ósseo , Consolidação da Fratura , Osteogênese , Fraturas não Consolidadas/terapia , Resultado do Tratamento , Estudos Retrospectivos
19.
J Appl Biomech ; 28(6): 726-37, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22813601

RESUMO

Recognizing the importance of both the torque-angle and torque-velocity relations, three-dimensional (3D) human strength capabilities (i.e., peak torque as a function of both joint angle and movement velocity) have been increasingly reported. It is not clear, however, the degree to which these surfaces vary between joints, particularly between joints with similar biomechanical configurations. Thus, our goal was to compare 3D strength surfaces between the muscles about the elbow and knee hinge joints in men and women. Peak isometric and isokinetic strength was assessed in 54 participants (30 men) using the Biodex System 3 isokinetic dynamometer. Normalized peak torque surfaces varied significantly between flexion and extension (within each joint) and between joints; however, the normalized 3D torque surfaces did not differ between men and women. These findings suggest the underlying joint biomechanics are the primary influences on these strength surface profiles. Therefore, in applications such as digital human modeling, torque-velocity-angle relationships for each joint and torque direction must be uniquely represented to most accurately estimate human strength capability.


Assuntos
Articulação do Cotovelo/fisiologia , Articulação do Joelho/fisiologia , Modelos Biológicos , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Resistência Física/fisiologia , Amplitude de Movimento Articular/fisiologia , Simulação por Computador , Feminino , Humanos , Masculino , Fatores Sexuais , Adulto Jovem
20.
J Geriatr Phys Ther ; 45(2): E120-E126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35384944

RESUMO

BACKGROUND AND PURPOSE: Osteoporosis is a systemic, metabolic bone disease that affects bone quality, increases susceptibility to low-trauma bone fracture, and has downstream effects on falls and fragility fractures. Osteoporosis is a multifactorial disease process that requires management from multiple health care providers including physicians, nurses, and physical therapists. However, the paucity of information regarding comprehensive physical therapist management for patients with osteoporosis indicated the need for an evidence-based document. The purpose of this document was to provide the best available expert guidance for clinicians in the selection of screening tools, essential tests and measures, treatment goals, and interventions for patients with osteoporosis. METHODS: A Delphi process was used. Thirty-one physical therapists with expertise in the care of patients with osteoporosis participated in a series of 3 sequential surveys designed to build and reach agreement on the management of patients with osteoporosis. The desired survey outcomes were to: (1) identify the range of examination and plan of care components considered important to physical therapists' care for patients with osteoporosis, (2) determine which components should be considered essential, and (3) achieve consensus on the final list of essential components and related operational definitions. RESULTS: A clear consensus on the essential components of examination and interventions was achieved. In general, there were 4 to 6 items across each category of history, tests and measures, education/goals, and treatment. CONCLUSIONS: The prioritization of these management items will better support clinicians working with adults who have osteoporosis.


Assuntos
Fraturas Ósseas , Osteoporose , Fisioterapeutas , Consenso , Técnica Delphi , Humanos , Osteoporose/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA