Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Biochim Biophys Acta Gen Subj ; 1862(10): 2254-2260, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30036602

RESUMO

BACKGROUND: Vaults are eukaryotic ribonucleoprotein particles composed of up 78 copies of the 97 kDa major vault protein that assembles into a barrel-like, "nanocapsule" enclosing poly(ADP-ribose) polymerase, telomerase-associated protein-1 and small untranslated RNAs. Overall, the molecular mass of vault particles amounts to about 13 MDa. Although it has been implicated in several cellular functions, its physiological roles remain poorly understood. Also, the possibility to exploit it as a nanovector for drug delivery is currently being explored in several laboratories. METHODS: Using the baculovirus expression system, vaults were expressed and purified by a dialysis step using a 1 MDa molecular weight cutoff membrane and a subsequent size exclusion chromatography. Purity was assessed by SDS-PAGE, transmission electron microscopy and dynamic light scattering. Particle's endocytic uptake was monitored by flow cytometry and confocal microscopy. RESULTS: The purification protocol here reported is far simpler and faster than those currently available and lead to the production of authentic vault. We then demonstrated its clathrin-mediated endocytic uptake by normal fibroblast and glioblastoma, but not carcinoma cell lines. In contrast, no significant caveolin-mediated endocytosis was detected. CONCLUSIONS: These results provide the first evidence for an intrinsic propensity of the vault complex to undergo endocytic uptake cultured eukaryotic cells. GENERAL SIGNIFICANCE: The newly developed purification procedure will greatly facilitate any investigation based on the use of the vault particle as a natural nanocarrier. Its clathrin-mediated endocytic uptake observed in normal and in some tumor cell lines sheds light on its physiological role.


Assuntos
Endocitose/fisiologia , Fibroblastos/citologia , Glioblastoma/metabolismo , Nanopartículas/administração & dosagem , Partículas de Ribonucleoproteínas em Forma de Abóbada/química , Partículas de Ribonucleoproteínas em Forma de Abóbada/metabolismo , Animais , Células Cultivadas , Sistemas de Liberação de Medicamentos , Endocitose/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Glioblastoma/patologia , Humanos , Nanopartículas/química , Transdução de Sinais , Spodoptera
2.
Biochim Biophys Acta Gen Subj ; 1862(7): 1556-1564, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29621630

RESUMO

BACKGROUND: Protein-nanoparticle (NP) interactions dictate properties of nanoconjugates relevant to bionanotechnology. Non-covalent adsorption generates a protein corona (PC) formed by an inner and an outer layer, the hard and soft corona (HC, SC). Intrinsically disordered proteins (IDPs) exist in solution as conformational ensembles, whose response to the presence of NPs is not known. METHODS: Three IDPs (α-casein, Sic1 and α-synuclein) and lysozyme are compared, describing conformational properties inside HC on silica NPs by circular dichroism (CD) and Fourier-transform infrared (FTIR) spectroscopy. RESULTS: IDPs inside HC are largely unstructured, but display small, protein-specific conformational changes. A minor increase in helical content is observed for α-casein and α-synuclein, reminiscent of membrane effects on α-synuclein. Frozen in their largely disordered conformation, bound proteins do not undergo folding induced by dehydration, as they do in their free forms. While HC thickness approaches the hydrodynamic diameter of the protein in solution for lysozyme, it is much below the respective values for IDPs. NPs boost α-synuclein aggregation kinetics in a dose-dependent manner. CONCLUSIONS: IDPs maintain structural disorder inside HC, experiencing minor, protein-specific, induced folding and stabilization against further conformational transitions, such as formation of intermolecular beta-sheets upon dehydration. The HC is formed by a single layer of protein molecules. SC likely plays a key role stabilizing amyloidogenic α-synuclein conformers. GENERAL SIGNIFICANCE: Protein-NP interactions can mimic those with macromolecular partners, allowing dissection of contributing factors by rational design of NP surfaces. Application of NPs in vivo should be carefully tested for amyloidogenic potential.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Nanopartículas , Conformação Proteica , Coroa de Proteína/química , Animais , Caseínas/química , Bovinos , Embrião de Galinha , Dicroísmo Circular , Proteínas Inibidoras de Quinase Dependente de Ciclina/química , Eletroforese em Gel de Poliacrilamida , Humanos , Muramidase/química , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/química , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier , alfa-Sinucleína/química
3.
Biomacromolecules ; 18(10): 3318-3330, 2017 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-28886247

RESUMO

Triple negative breast cancer (TNBC) is a highly aggressive, invasive, and metastatic tumor. Although it is reported to be sensitive to cytotoxic chemotherapeutics, frequent relapse and chemoresistance often result in treatment failure. In this study, we developed a biomimetic nanodrug consisting of a self-assembling variant (HFn) of human apoferritin loaded with curcumin. HFn nanocage improved the solubility, chemical stability, and bioavailability of curcumin, allowing us to reliably carry out several experiments in the attempt to establish the potential of this molecule as a therapeutic agent and elucidate the mechanism of action in TNBC. HFn biopolymer was designed to bind selectively to the TfR1 receptor overexpressed in TNBC cells. HFn-curcumin (CFn) proved to be more effective in viability assays compared to the drug alone using MDA-MB-468 and MDA-MB-231 cell lines, representative of basal and claudin-low TNBC subtypes, respectively. Cellular uptake of CFn was demonstrated by flow cytometry and label-free confocal Raman imaging. CFn could act as a chemosensitizer enhancing the cytotoxic effect of doxorubicin by interfering with the activity of multidrug resistance transporters. In addition, CFn exhibited different cell cycle effects on these two TNBC cell lines, blocking MDA-MB-231 in G0/G1 phase, whereas MDA-MB-468 accumulated in G2/M phase. CFn was able to inhibit the Akt phosphorylation, suggesting that the effect on the proliferation and cell cycle involved the alteration of PI3K/Akt pathway.


Assuntos
Antineoplásicos/farmacologia , Apoferritinas/farmacologia , Curcumina/farmacologia , Nanopartículas/química , Neoplasias de Mama Triplo Negativas/metabolismo , Transporte Biológico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Bioconjug Chem ; 27(12): 2911-2922, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27809498

RESUMO

Gold nanocages (AuNCs) have been shown to be a useful tool for harnessing imaging and hyperthermia therapy of cancer, thanks to their unique optical properties, low toxicity, and facile surface functionalization. Herein, we use AuNCs for selective targeting of prostate cancer cells (PC3) via specific interaction between neuropeptide Y (NPY) receptor and three different NPY analogs conjugated to AuNCs. Localized surface plasmon resonance band of the nanoconjugates was set around 800 nm, which is appropriate for in vivo applications. Long-term stability of nanoconjugates in different media was confirmed by UV-vis and DLS studies. Active NPY receptor targeting was observed by confocal microscopy showing time-dependent AuNCs cellular uptake. Activation of ERK1/2 pathway was evaluated by Western blot to confirm the receptor-mediated specific interaction with PC3. Cellular uptake kinetics were compared as a function of peptide structure. Cytotoxicity of nanoconjugates was evaluated by MTS and Annexin V assays, confirming their safety within the concentration range explored. Hyperthermia studies were carried out irradiating the cells, previously incubated with AuNCs, with a pulsed laser at 800 nm wavelength, showing a heating enhancement ranging from 6 to 35 °C above the culture temperature dependent on the irradiation power (between 1.6 and 12.7 W/cm2). Only cells treated with AuNCs underwent morphological alterations in the cytoskeleton structure upon laser irradiation, leading to membrane blebbing and loss of microvilli associated with cell migration. This effect is promising in view of possible inhibition of proliferation and invasion of cancer cells. In summary, our Au-peptide NCs proved to be an efficient theranostic nanosystem for targeted detection and activatable killing of prostate cancer cells.


Assuntos
Terapia de Alvo Molecular/métodos , Nanopartículas , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/terapia , Nanomedicina Teranóstica/métodos , Linhagem Celular Tumoral , Desenho de Fármacos , Ouro , Humanos , Lasers , Masculino , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Peptídeos/síntese química , Peptídeos/química , Neoplasias da Próstata/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Termografia/métodos
5.
Langmuir ; 32(29): 7435-41, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27367748

RESUMO

The goal of this work is to develop an innovative approach for the coating of gold nanoparticles (AuNPs) with a synthetic functional copolymer. This stable coating with a thickness of few nanometers provides, at the same time, stabilization and functionalization of the particles. The polymeric coating consists of a backbone of polydimethylacrylamide (DMA) functionalized with an alkyne monomer that allows the binding of azido modified molecules by Cu(I)-catalyzed azide/alkyne 1,3-dipolar cycloaddition (CuAAC, click chemistry). The thin polymer layer on the surface stabilizes the colloidal suspension whereas the alkyne functions pending from the backbone are available for the reaction with azido-modified proteins. The reactivity of the coating is demonstrated by immobilizing an azido modified anti-mouse IgG antibody on the particle surface. This approach for the covalent binding of antibody to a gold-NPs is applied to the development of gold labels in biosensing techniques.


Assuntos
Anticorpos Imobilizados/química , Ouro/química , Imunoglobulina G/química , Nanopartículas Metálicas/química , Acrilamidas/química , Animais , Coloides , Cobre/química , Coelhos
6.
Pharmacol Res ; 111: 155-162, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27293049

RESUMO

Tumor homing peptides (THPs) specific for a representative breast cancer cell line (MCF-7) were carefully selected basing on a phage-displayed peptide library freely available on the web, namely the "TumorHoPe: A Database of Tumor Homing Peptides". The selected THPs were synthesized and evaluated in terms of their affinity toward MCF-7 cells. Out of 5 tested THPs, 3 best-performing peptide sequences and 1 scrambled sequence were separately conjugated to spherical gold nanoparticles yielding stable nanoconjugates. THP nanoconjugates were examined for their ability to actively target MCF-7 cells in comparison to noncancerous 3T3-L1 fibroblast cells. These THP-gold nanoconjugates exhibited good selectivity and binding affinity by flow cytometry, and low cytotoxicity as assayed by cell death experiments. The uptake of targeted nanoconjugates by the breast cancer cells was confirmed by transmission electron microscopy analysis. This work demonstrates that it is possible to exploit the conjugation of short peptides selected from phage-displayed libraries to develop nanomaterials reliably endowed with tumor targeting potential irrespective of a specific knowledge of the target cell biology.


Assuntos
Neoplasias da Mama/metabolismo , Técnicas de Visualização da Superfície Celular , Portadores de Fármacos , Ouro/química , Nanopartículas Metálicas , Nanoconjugados , Biblioteca de Peptídeos , Peptídeos/metabolismo , Células 3T3-L1 , Animais , Transporte Biológico , Neoplasias da Mama/genética , Neoplasias da Mama/ultraestrutura , Composição de Medicamentos , Feminino , Humanos , Células MCF-7 , Camundongos , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Peptídeos/química
7.
Bioconjug Chem ; 25(8): 1381-6, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25080049

RESUMO

The functionalization of colloidal nanoparticles with short peptides often fails in achieving satisfactory targeting efficiency and selectivity toward receptor-specific human cells. Here, we show that an optimized passivation of gold nanoparticle surface with a mixed self-assembled monolayer, including a targeting ligand, a fluorescent dye, and an intercalating short PEG derivative, led to a very stable, nontoxic, and efficient nanoconjugate for targeting urokinase plasminogen activator receptor-positive breast cancer cells.


Assuntos
Neoplasias da Mama/patologia , Ouro/química , Nanopartículas Metálicas/química , Terapia de Alvo Molecular , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Sequência de Aminoácidos , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Desenho de Fármacos , Corantes Fluorescentes/química , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Polietilenoglicóis/química , Especificidade por Substrato
8.
Bioconjug Chem ; 23(3): 340-9, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22375916

RESUMO

Gold nanoparticles were obtained by reduction of a tetrachloroaurate aqueous solution in the presence of a RGD-(GC)(2) peptide as stabilizer. As comparison, the behavior of the (GC)(2) peptide has been studied. The (GC)(2) and RGD-(GC)(2) peptides were prepared ad hoc by Fmoc synthesis. The colloidal systems have been characterized by UV-visible, TGA, ATR-FTIR, mono and bidimensional NMR techniques, confocal and transmission (TEM) microscopy, ζ-potential, and light scattering measurements. The efficient cellular uptake of Au-RGD-(GC)(2) and Au-(GC)(2) stabilized gold nanoparticles into U87 cells (human glioblastoma cells) were investigated by confocal microscopy and compared with the behavior of (GC)(2) capped gold nanoparticles. A quantitative determination of the nanoparticles taken up has been carried out by measuring the pixel brightness of the images, a measure that highlighted the importance of the RGD termination of the peptide. Insight in the cellular uptake mechanism was investigated by TEM microscopy. Various important evidences indicated the selective uptake of RGD-(GC)(2) gold nanoparticles into the nucleus.


Assuntos
Ouro/química , Integrinas/química , Nanopartículas Metálicas , Oligopeptídeos/química , Peptídeos/química , Linhagem Celular Tumoral , Humanos , Espectroscopia de Ressonância Magnética , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
9.
Int J Nanomedicine ; 13: 957-973, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29491709

RESUMO

BACKGROUND: We report the development of an efficient antibody delivery system for the incorporation of trastuzumab (TZ) into poly(lactic-co-glycolic) acid nanoparticles (PLGA NPs). The aim of the work was to overcome the current limitations in the clinical use of therapeutic antibodies, including immunogenicity, poor pharmacokinetics, low tumor penetration and safety issues. MATERIALS AND METHODS: Trastuzumab-loaded PLGA NPs (PLGA-TZ) were synthesized according to a double emulsion method. The same protocol was used to produce control batches of nonspecific IgG-loaded NPs and empty PLGA NPs. After release of TZ from PLGA NPs, the effects on the main biological activities of the antibody were evaluated on SKBR3 (human epidermal growth factor receptor 2 [HER2]-positive breast cancer cell line), including specific binding to HER2, phosphorylation of HER2 (Y1248), degradation of HER2 protein and antibody-dependent cell-mediated cytotoxicity (ADCC) mechanism. In addition, an MTT assay was performed for treating SKBR3 cells with PLGA NPs loaded with TZ and doxorubicin to evaluate the cytotoxic activity of the combined treatment. RESULTS AND DISCUSSION: TZ was gradually released in a prolonged way over 30 days. The physical characterization performed with circular dichroism, Fourier transform infrared and fluorescence spectroscopy of TZ after release demonstrated that no structural alterations occurred compared to the native antibody. In vitro experiments using SKBR3 cells showed that TZ released from PLGA NPs maintained the same biological activity of native TZ. PLGA NPs allowed a good co-encapsulation efficiency of TZ and doxorubicin resulting in improved therapy. CONCLUSION: With the TZ case study, we demonstrate that the distinctive features of therapeutic monoclonal antibodies, including molecular targeting efficiency, capability to inhibit or properly affect the regulatory signaling pathways of cancer cells and stimulation of the ADCC, are fully preserved after loading into and release from PLGA NPs. In addition, PLGA NPs are shown to allow for the simultaneous incorporation of TZ and conventional chemotherapeutics, resulting in a potent antitumor nanodrug well suited for in situ combination and neoadjuvant therapy.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Nanopartículas/química , Trastuzumab/farmacologia , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/farmacocinética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Feminino , Humanos , Ácido Láctico/química , Nanopartículas/administração & dosagem , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Receptor ErbB-2/metabolismo , Trastuzumab/administração & dosagem , Trastuzumab/farmacocinética
10.
J Colloid Interface Sci ; 519: 18-26, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29477896

RESUMO

Nanoparticles are normally classified as "hard", mainly consisting of metal or metal oxide cores, or "soft", including polymer-based, liposomes and biomimetic nanoparticles. Soft nanoparticles have been studied in depth for drug formulation and therapeutic delivery applications, albeit hard nanoparticles may offer easier synthesis, smaller size and more effective tumor penetration. Among them, silica nanoparticles maintain excellent biocompatibility and biodegradability and can be finely adjusted in size and shape, easily produced in a large scale and functionalized or loaded with active molecules. To help filling the gap of a poor clinical translation of hard nanoparticles, we have designed and developed three different nonporous silica nanocarriers loading the chemotherapeutic doxorubicin within the core matrix, on the surface or both inside and outside, respectively. A comparative study was performed on drug loading and drug release, silica matrix degradation and nanodrug cytotoxic activity, highlighting unexpected correlation between the strategy adopted for drug incorporation and nanoparticle behavior in a physiological environment. This study offers a new insight on the impact of the choice of the prodrug nanoparticles on the kinetics and efficacy of drug delivery, which may encourage the scientific community in developing a new generation of drug delivery systems based on hard nanocarriers.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/química , Nanopartículas/química , Dióxido de Silício/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Liberação Controlada de Fármacos , Células HeLa , Humanos , Tamanho da Partícula , Porosidade , Propriedades de Superfície
12.
Int J Nanomedicine ; 12: 2517-2530, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28408822

RESUMO

BACKGROUND: The discovery of new solutions with antibacterial activity as efficient and safe alternatives to common preservatives (such as parabens) and to combat emerging infections and drug-resistant bacterial pathogens is highly expected in cosmetics and pharmaceutics. Colloidal silver nanoparticles (NPs) are attracting interest as novel effective antimicrobial agents for the prevention of several infectious diseases. METHODS: Water-soluble, negatively charged silver nanoparticles (AgNPs) were synthesized by reduction with citric and tannic acid and characterized by transmission electron microscopy, dynamic light scattering, zeta potential, differential centrifuge sedimentation, and ultraviolet-visible spectroscopy. AgNPs were tested with model Gram-negative and Gram-positive bacteria in comparison to two different kinds of commercially available AgNPs. RESULTS: In this work, AgNPs with higher antibacterial activity compared to the commercially available colloidal silver solutions were prepared and investigated. Bacteria were plated and the antibacterial activity was tested at the same concentration of silver ions in all samples. The AgNPs did not show any significant reduction in the antibacterial activity for an acceptable time period. In addition, AgNPs were transferred to organic phase and retained their antibacterial efficacy in both aqueous and nonaqueous media and exhibited no toxicity in eukaryotic cells. CONCLUSION: We developed AgNPs with a 20 nm diameter and negative zeta potential with powerful antibacterial activity and low toxicity compared to currently available colloidal silver, suitable for cosmetic preservatives and pharmaceutical preparations administrable to humans and/or animals as needed.


Assuntos
Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Prata/farmacologia , Células 3T3-L1/efeitos dos fármacos , Animais , Antibacterianos/efeitos adversos , Antibacterianos/química , Ácido Cítrico/química , Coloides/química , Avaliação Pré-Clínica de Medicamentos/métodos , Difusão Dinâmica da Luz , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Nanopartículas Metálicas/efeitos adversos , Camundongos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Prata/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Taninos/química
13.
Trends Biotechnol ; 32(1): 11-20, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24182737

RESUMO

Nanomedicine has emerged in the past decade as a promising tool for several therapeutic and diagnostic applications. The development of nanoconjugates containing bioactive ligands specific for targeting cancer cell receptors has become a primary objective of modern nanotechnology. The design of ideal nanoconjugates requires optimization of fundamental parameters including size, shape, ligand shell composition, and reduction in nonspecific protein adsorption. Of great importance is the choice of bioconjugation approach, given that it affects the orientation, accessibility, and bioactivity of the targeting molecule. We provide an overview of recent advances in the immobilization of targeting proteins, focusing on methods to control ligand orientation and density, and highlight criteria for nanoparticle design and development required to achieve enhanced receptor-targeting efficiency.


Assuntos
Biotecnologia , Sistemas de Liberação de Medicamentos , Nanoconjugados , Nanomedicina , Antineoplásicos , Linhagem Celular Tumoral , Humanos
14.
Chem Commun (Camb) ; 50(75): 11029-32, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-25101357

RESUMO

A novel approach for multivalent targeting by using gold nanoparticles noncovalently decorated by tight functionalization with a cone-glycocalixarene bearing four mannose units is reported. The targeting efficiency of these multivalent nanoparticles is shown to be remarkably improved compared to that of nanoparticles bearing a monovalent mannosylated derivative.


Assuntos
Calixarenos/química , Ouro/química , Nanopartículas Metálicas/química , Nanoconjugados/química , Anticorpos/química , Anticorpos/imunologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Células HeLa , Humanos , Manose/química , Peptídeos/química , Peptídeos/metabolismo
15.
Adv Healthc Mater ; 3(7): 957-76, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24443410

RESUMO

Understanding the behavior of multifunctional colloidal nanoparticles capable of biomolecular targeting remains a fascinating challenge in materials science with dramatic implications in view of a possible clinical translation. In several circumstances, assumptions on structure-activity relationships have failed in determining the expected responses of these complex systems in a biological environment. The present Review depicts the most recent advances about colloidal nanoparticles designed for use as tools for cellular nanobiotechnology, in particular, for the preferential transport through different target compartments, including cell membrane, cytoplasm, mitochondria, and nucleus. Besides the conventional entry mechanisms based on crossing the cellular membrane, an insight into modern physical approaches to quantitatively deliver nanomaterials inside cells, such as microinjection and electro-poration, is provided. Recent hypotheses on how the nanoparticle structure and functionalization may affect the interactions at the nano-bio interface, which in turn mediate the nanoparticle internalization routes, are highlighted. In addition, some hurdles when this small interface faces the physiological environment and how this phenomenon can turn into different unexpected responses, are discussed. Finally, possible future developments oriented to synergistically tailor biological and chemical properties of nanoconjugates to improve the control over nanoparticle transport, which could open new scenarios in the field of nanomedicine, are addressed.


Assuntos
Coloides , Sistemas de Liberação de Medicamentos , Nanopartículas , Animais , Linhagem Celular , Humanos , Mamíferos , Modelos Biológicos , Nanomedicina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA