Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Anal Chem ; 92(18): 12257-12264, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32786449

RESUMO

Determining the physicochemical properties of ingested nanoparticles within the gastrointestinal tract (GIT) is critical for evaluating the impact of environmental exposure and potential for nanoparticle drug delivery. However, it is challenging to predict nanoparticle physicochemical properties at the point of intestinal absorption due to the changing chemical environments within the GIT. Herein, a dynamic nanoparticle digestion simulator (NDS) was constructed to examine nanoparticle evolution due to changing pH and salt concentrations in the stomach and upper intestine. This multicompartment, flow-through system simulates digestion by transferring gastrointestinal fluids and digestive secretions at physiologically relevant time scales and flow rates. Pronounced differences in aggregation and aggregate stability were observed with silver nanoparticles (citrate-coated) with an initial hydrodynamic diameter (Dh) of 24.6 ± 0.4 nm examined under fasted (pH 2) and fed (pH 5) gastric conditions using nanoparticle tracking analysis (NTA) for size distributions and transmission electron microscopy with energy dispersive X-ray spectroscopy (TEM-EDX) for morphology and elemental composition. Under fasted stomach conditions, particles aggregated to Dh = 130 ± 10 nm and remained as large aggregates in the upper intestinal compartments (duodenum and jejunum) ending with Dh = 110 ± 20 nm and a smaller mode at 59 ± 8 nm. In contrast, under fed conditions, nanoparticles aggregated to 60 ± 10 nm in the stomach, then disaggregated to individual nanoparticles (26 ± 2 nm) in the intestinal compartments. The NDS provides an analytical approach for studying nanoparticle physicochemical modifications within the GIT and the impacts of intentionally and unintentionally ingested nanoparticles.


Assuntos
Trato Gastrointestinal/metabolismo , Nanopartículas Metálicas/química , Prata/metabolismo , Trato Gastrointestinal/química , Humanos , Hidrodinâmica , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Prata/química
2.
Proc Natl Acad Sci U S A ; 113(21): 5797-803, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-26699469

RESUMO

Ice nucleating particles (INPs) are vital for ice initiation in, and precipitation from, mixed-phase clouds. A source of INPs from oceans within sea spray aerosol (SSA) emissions has been suggested in previous studies but remained unconfirmed. Here, we show that INPs are emitted using real wave breaking in a laboratory flume to produce SSA. The number concentrations of INPs from laboratory-generated SSA, when normalized to typical total aerosol number concentrations in the marine boundary layer, agree well with measurements from diverse regions over the oceans. Data in the present study are also in accord with previously published INP measurements made over remote ocean regions. INP number concentrations active within liquid water droplets increase exponentially in number with a decrease in temperature below 0 °C, averaging an order of magnitude increase per 5 °C interval. The plausibility of a strong increase in SSA INP emissions in association with phytoplankton blooms is also shown in laboratory simulations. Nevertheless, INP number concentrations, or active site densities approximated using "dry" geometric SSA surface areas, are a few orders of magnitude lower than corresponding concentrations or site densities in the surface boundary layer over continental regions. These findings have important implications for cloud radiative forcing and precipitation within low-level and midlevel marine clouds unaffected by continental INP sources, such as may occur over the Southern Ocean.

3.
Environ Sci Technol ; 52(2): 397-405, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29169236

RESUMO

In freshwater lakes, harmful algal blooms (HABs) of Cyanobacteria (blue-green algae) produce toxins that impact human health. However, little is known about the lake spray aerosol (LSA) produced from wave-breaking in freshwater HABs. In this study, LSA were produced in the laboratory from freshwater samples collected from Lake Michigan and Lake Erie during HAB and nonbloom conditions. The incorporation of biological material within the individual HAB-influenced LSA particles was examined by single-particle mass spectrometry, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and fluorescence microscopy. Freshwater with higher blue-green algae content produced higher number fractions of individual LSA particles that contained biological material, showing that organic molecules of biological origin are incorporated in LSA from HABs. The number fraction of individual LSA particles containing biological material also increased with particle diameter (greater than 0.5 µm), a size dependence that is consistent with previous studies of sea spray aerosol impacted by phytoplankton blooms. Similar to sea spray aerosol, organic carbon markers were most frequently observed in individual LSA particles less than 0.5 µm in diameter. Understanding the transfer of biological material from freshwater to the atmosphere via LSA is crucial for determining health and climate effects of HABs.


Assuntos
Proliferação Nociva de Algas , Lagos , Aerossóis , Humanos , Michigan , Fitoplâncton
4.
J Phys Chem A ; 121(30): 5690-5699, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28691807

RESUMO

Atmospheric aerosol acidity impacts key multiphase processes, such as acid-catalyzed reactions leading to secondary organic aerosol formation, which impact climate and human health. However, traditional indirect methods of estimating aerosol pH often disagree with thermodynamic model predictions, resulting in aerosol acidity still being poorly understood in the atmosphere. Herein, a recently developed method coupling Raman microspectroscopy with extended Debye-Hückel activity calculations to directly determine the acidity of individual particles (1-15 µm projected area diameter, average 6 µm) was applied to a range of atmospherically relevant inorganic and organic acid-base equilibria systems (HNO3/NO3-, HC2O4-/C2O42-, CH3COOH/CH3COO-, and HCO3-/CO32-) covering a broad pH range (-1 to 10), as well as an inorganic-organic mixture (sulfate-oxalate). Given the ionic strength of the inorganic solutions, the H+ activity, γ(H+), yielded lower values (0.68-0.75) than the organic and mixed systems (0.72-0.80). A consistent relationship between increasing peak broadness with decreasing pH was observed for acidic species, but not their conjugate bases. Greater insight into spectroscopic responses to acid-base equilibria for more complicated mixtures is still needed to understand the behavior of atmospheric aerosols.

5.
Environ Sci Technol ; 50(18): 9835-45, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27548099

RESUMO

Aerosol production from wave breaking on freshwater lakes, including the Laurentian Great Lakes, is poorly understood in comparison to sea spray aerosol (SSA). Aerosols from freshwater have the potential to impact regional climate and public health. Herein, lake spray aerosol (LSA) is defined as aerosol generated from freshwater through bubble bursting, analogous to SSA from seawater. A chemical signature for LSA was determined from measurements of ambient particles collected on the southeastern shore of Lake Michigan during an event (July 6-8, 2015) with wave heights up to 3.1 m. For comparison, surface freshwater was collected, and LSA were generated in the laboratory. Single particle microscopy and mass spectrometry analysis of field and laboratory-generated samples show that LSA particles are primarily calcium (carbonate) with lower concentrations of other inorganic ions and organic material. Laboratory number size distributions show ultrafine and accumulation modes at 53 (±1) and 276 (±8) nm, respectively. This study provides the first chemical signature for LSA. LSA composition is shown to be coupled to Great Lakes water chemistry (Ca(2+) > Mg(2+) > Na(+) > K(+)) and distinct from SSA. Understanding LSA physicochemical properties will improve assessment of LSA impacts on regional air quality, climate, and health.


Assuntos
Lagos , Tamanho da Partícula , Aerossóis , Michigan , Água do Mar/química
6.
J Phys Chem A ; 119(33): 8860-70, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26196268

RESUMO

Sea spray aerosol (SSA) particles represent one of the most abundant surfaces available for heterogeneous reactions to occur upon and thus profoundly alter the composition of the troposphere. In an effort to better understand tropospheric heterogeneous reaction processes, fundamental laboratory studies must be able to accurately reproduce the chemical complexity of SSA. Here we describe a new approach that uses microbial processes to control the composition of seawater and SSA particle composition. By inducing a phytoplankton bloom, we are able to create dynamic ecosystem interactions between marine microorganisms, which serve to alter the organic mixtures present in seawater. Using this controlled approach, changes in seawater composition become reflected in the chemical composition of SSA particles 4 to 10 d after the peak in chlorophyll-a. This approach for producing and varying the chemical complexity of a dominant tropospheric aerosol provides the foundation for further investigations of the physical and chemical properties of realistic SSA particles under controlled conditions.


Assuntos
Aerossóis/química , Clorofila/química , Modelos Químicos , Água do Mar/química , Clorofila A , Laboratórios
7.
J Phys Chem A ; 117(40): 10260-73, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24001040

RESUMO

Gas-phase vibrational spectra of 2-aminoethanol and 3-aminopropanol were recorded up to the third OH-stretching overtone using Fourier transform infrared spectroscopy, cavity ringdown spectroscopy, and intracavity laser photoacoustic spectroscopy. The experimental investigation was supplemented by local mode calculations, and the intramolecular interactions were investigated using atoms in molecules (AIM) and noncovalent interactions (NCI) theories. All calculations were performed at the CCSD(T)-F12a/VDZ-F12 level of theory. For both compounds the most abundant conformer has a structure that allows for hydrogen bond interaction from the OH group to the N atom of the amino group (OH-N). The spectra show signals from both hydrogen bonded and free OH stretches, implying the presence of several conformers. We observe hydrogen-bond-like interactions in both compounds. The red shift of the bonded OH-stretching frequency and intensity enhancement of the fundamental transition suggest that the hydrogen bond interaction is more pronounced in 3-aminopropanol. AIM analysis supports the presence of a hydrogen bond in 3-aminopropanol but not in 2-aminoethanol, whereas NCI analysis shows hydrogen bonding in both compounds with the stronger interaction found in 3-aminopropanol.

8.
Proc Natl Acad Sci U S A ; 107(15): 6687-92, 2010 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20142510

RESUMO

In aqueous solution, aldehydes, and to a lesser extent ketones, hydrate to form geminal diols. We investigate the hydration of methylglyoxal (MG) in the gas phase, a process not previously considered to occur in water-restricted environments. In this study, we spectroscopically identified methylglyoxal diol (MGD) and obtained the gas-phase partial pressures of MG and MGD. These results, in conjunction with the relative humidity, were used to obtain the equilibrium constant, K(P), for the water-mediated hydration of MG in the gas phase. The Gibbs free energy for this process, DeltaG(o), obtained as a result, suggests a larger than expected gas-phase diol concentration. This may have significant implications for understanding the role of organics in atmospheric chemistry.


Assuntos
Álcoois/química , Química Orgânica/métodos , Gases , Aldeído Pirúvico/química , Aerossóis/química , Umidade , Modelos Químicos , Compostos Orgânicos/química , Oxigênio/química , Pressão Parcial , Pressão , Espectrofotometria/métodos , Termodinâmica , Vibração , Água/química
10.
Sci Rep ; 12(1): 3580, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246545

RESUMO

Ocean waves transfer sea spray aerosol (SSA) to the atmosphere, and these SSA particles can be enriched in organic matter relative to salts compared to seawater ratios. A fundamental understanding of the factors controlling the transfer of biogenic organic matter from the ocean to the atmosphere remains elusive. Field studies that focus on understanding the connection between organic species in seawater and SSA are complicated by the numerous processes and sources affecting the composition of aerosols in the marine environment. Here, an isolated ocean-atmosphere system enables direct measurements of the sea-air transfer of different classes of biogenic organic matter over the course of two phytoplankton blooms. By measuring excitation-emission matrices of bulk seawater, the sea surface microlayer, and SSA, we investigate time series of the transfer of fluorescent species including chlorophyll-a, protein-like substances, and humic-like substances. Herein, we show the emergence of different molecular classes in SSA at specific times over the course of a phytoplankton bloom, suggesting that SSA chemical composition changes over time in response to changing ocean biological conditions. We compare the temporal behaviors for the transfer of each component, and discuss the factors contributing to differences in transfer between phases.


Assuntos
Partículas e Gotas Aerossolizadas , Água do Mar , Aerossóis/química , Atmosfera/química , Fitoplâncton , Água do Mar/química
11.
J Phys Chem A ; 115(17): 4388-96, 2011 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-21462920

RESUMO

The solubility of gas-phase acetic acid (CH(3)COOH, HAc) and trifluoroacetic acid (CF(3)COOH, TFA) in aqueous sulfuric acid solutions was measured in a Knudsen cell reactor over ranges of temperature (207-245 K) and acid composition (40-75 wt %, H(2)SO(4)). For both HAc and TFA, the effective Henry's law coefficient, H*, is inversely dependent on temperature. Measured values of H* for TFA range from 1.7 × 10(3) M atm(-1) in 75.0 wt % H(2)SO(4) at 242.5 K to 3.6 × 10(8) M atm(-1) in 40.7 wt % H(2)SO(4) at 207.8 K. Measured values of H* for HAc range from 2.2 × 10(5) M atm(-1) in 57.8 wt % H(2)SO(4) at 245.0 K to 3.8 × 10(8) M atm(-1) in 74.4 wt % H(2)SO(4) at 219.6 K. The solubility of HAc increases with increasing H(2)SO(4) concentration and is higher in strong sulfuric acid than in water. In contrast, the solubility of TFA decreases with increasing sulfuric acid concentration. The equilibrium concentration of HAc in UT/LS aerosol particles is estimated from our measurements and is found to be up to several orders of magnitude higher than those determined for common alcohols and small carbonyl compounds. On the basis of our measured solubility, we determine that HAc in the upper troposphere undergoes aerosol partitioning, though the role of H(2)SO(4) aerosol particles as a sink for HAc in the upper troposphere and lower stratosphere will only be discernible under high atmospheric sulfate perturbations.


Assuntos
Ácido Acético/química , Ácidos Sulfúricos/química , Temperatura , Ácido Trifluoracético/química , Atmosfera , Solubilidade , Soluções
12.
J Chem Phys ; 132(9): 094305, 2010 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-20210396

RESUMO

The early time dynamics of vibrationally excited glyoxylic acid and of its monohydrate 2,2-dihydroxyacetic acid are investigated by theoretical and spectroscopic methods. A combination of "on-the-fly" dynamical simulations and cavity ring-down spectroscopy on the excited O-H stretching vibrational levels of these molecules observed that conformers that possess the correct structure and orientation react upon excitation of Deltaupsilon(OH)=4,5, while the structurally different but near isoenergetic conformers do not undergo unimolecular decay by the same direct and fast process. Experiment and theory give a femtosecond time scale for hydrogen atom chattering in the vibrationally excited glyoxylic acid. This process is the precursor for the concerted decarboxylation of the ketoacid. We extrapolate the results obtained here to suggest a rapid subpicosecond overall reaction. In these light-initiated reactions, relatively cold hydroxycarbenes, stable against further unimolecular decay, are expected products since most of the excitation energy is consumed by the endothermicity of the reaction. Glyoxylic acid and its monohydrate are atmospherically relevant ketoacids. The vibrational overtone initiated reactions of glyoxylic acid leading to di- and monohydroxycarbenes on subpicosecond time scales are potentially of importance in atmospheric chemistry since the reaction is sufficiently rapid to avoid collisional dissipation.

13.
Environ Sci Nano ; 3(6): 1510-1520, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28357114

RESUMO

Due to their widespread incorporation into a range of biomedical and consumer products, the ingestion of silver nanoparticles (AgNPs) is of considerable concern to human health. However, the extent to which AgNPs will be modified within the gastric compartment of the gastrointestinal tract is still poorly understood. Studies have yet to fully evaluate the extent of physicochemical changes to AgNPs in the presence of biological macromolecules, such as pepsin, the most abundant protein in the stomach, or the influence of AgNPs on protein structure and activity. Herein, AgNPs of two different sizes and surface coatings (20 and 110 nm, citrate or polyvinylpyrrolidone) were added to simulated gastric fluid (SGF) with or without porcine pepsin at three pHs (2.0, 3.5, and 5.0), representing a range of values between preprandial (fasted) and postprandial (fed) conditions. Rapid increases in diameter were observed for all AgNPs, with a greater increase in diameter in the presence of pepsin, indicating that pepsin facilitated AgNPs aggregation. AgNPs interaction with pepsin only minimally reduced the protein's proteolytic functioning capability, with the greatest inhibitory effect caused by smaller (20 nm) particles of both coatings. No changes in pepsin secondary structural elements were observed for the different AgNPs, even at high particle concentrations. This research highlights the size-dependent kinetics of nanoparticle aggregation or dissolution from interaction with biological elements such as proteins in the gastrointestinal tract. Further, these results demonstrate that, in addition to mass, knowing the chemical form and aggregation state of nanoparticles is critical when evaluating toxicological effects from nanoparticle exposure in the body.

14.
Nanotoxicology ; 10(3): 352-60, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26305411

RESUMO

Consumer exposure to silver nanoparticles (AgNP) via ingestion can occur due to incorporation of AgNP into products such as food containers and dietary supplements. AgNP variations in size and coating may affect toxicity, elimination kinetics or tissue distribution. Here, we directly compared acute administration of AgNP of two differing coatings and sizes to mice, using doses of 0.1, 1 and 10 mg/kg body weight/day administered by oral gavage for 3 days. The maximal dose is equivalent to 2000× the EPA oral reference dose. Silver acetate at the same doses was used as ionic silver control. We found no toxicity and no significant tissue accumulation. Additionally, no toxicity was seen when AgNP were dosed concurrently with a broad-spectrum antibiotic. Between 70.5% and 98.6% of the administered silver dose was recovered in feces and particle size and coating differences did not significantly influence fecal silver. Peak fecal silver was detected between 6- and 9-h post-administration and <0.5% of the administered dose was cumulatively detected in liver, spleen, intestines or urine at 48 h. Although particle size and coating did not affect tissue accumulation, silver was detected in liver, spleen and kidney of mice administered ionic silver at marginally higher levels than those administered AgNP, suggesting that silver ion may be more bioavailable. Our results suggest that, irrespective of particle size and coating, acute oral exposure to AgNP at doses relevant to potential human exposure is associated with predominantly fecal elimination and is not associated with accumulation in tissue or toxicity.


Assuntos
Fezes/química , Nanopartículas Metálicas/toxicidade , Tamanho da Partícula , Prata/farmacocinética , Prata/toxicidade , Acetatos/farmacocinética , Acetatos/toxicidade , Animais , Peso Corporal/efeitos dos fármacos , Ácido Cítrico/química , Ácido Cítrico/toxicidade , Relação Dose-Resposta a Droga , Cinética , Masculino , Nanopartículas Metálicas/química , Camundongos , Modelos Animais , Tamanho do Órgão/efeitos dos fármacos , Polivinil/química , Polivinil/toxicidade , Pirrolidinas/química , Pirrolidinas/toxicidade , Prata/análise , Prata/química , Compostos de Prata/farmacocinética , Compostos de Prata/toxicidade , Distribuição Tecidual
15.
ACS Cent Sci ; 2(1): 40-47, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26878061

RESUMO

The composition and surface properties of atmospheric aerosol particles largely control their impact on climate by affecting their ability to uptake water, react heterogeneously, and nucleate ice in clouds. However, in the vacuum of a conventional electron microscope, the native surface and internal structure often undergo physicochemical rearrangement resulting in surfaces that are quite different from their atmospheric configurations. Herein, we report the development of cryogenic transmission electron microscopy where laboratory generated sea spray aerosol particles are flash frozen in their native state with iterative and controlled thermal and/or pressure exposures and then probed by electron microscopy. This unique approach allows for the detection of not only mixed salts, but also soft materials including whole hydrated bacteria, diatoms, virus particles, marine vesicles, as well as gel networks within hydrated salt droplets-all of which will have distinct biological, chemical, and physical processes. We anticipate this method will open up a new avenue of analysis for aerosol particles, not only for ocean-derived aerosols, but for those produced from other sources where there is interest in the transfer of organic or biological species from the biosphere to the atmosphere.

16.
J Phys Chem C Nanomater Interfaces ; 119(35): 20632-20641, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-28373899

RESUMO

As silver nanoparticles (AgNPs) are used in a wide array of commercial products and can enter the human body through oral exposure, it is important to understand the fundamental physical and chemical processes leading to changes in nanoparticle size under the conditions of the gastrointestinal (GI) tract. Rapid AgNP growth was observed using nanoparticle tracking analysis with 30 s resolution over a period of 17 min in simulated gastric fluid (SGF) to explore rapid kinetics as a function of pH (SGF at pH 2, 3.5, 4.5 and 5), size (20 and 110 nm AgNPs), and nanoparticle coating (citrate and PVP). Growth was observed for 20 nm AgNP at each pH, decreasing in rate with increasing pH, with the kinetics shifting from second-order to first-order. The 110 nm AgNP showed growth at ≤3.5 pH, with no growth observed at higher pH. This behavior can be explained by the generation of Ag+ in acidic environments, which precipitates with Cl-, leading to particle growth and facilitating particle aggregation by decreasing their electrostatic repulsion in solution. These results highlight the need to further understand the importance of initial size, physicochemical properties, and kinetics of AgNPs after ingestion to assess potential toxicity.

17.
Aerosol Sci Technol ; 49(1): 24-34, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25705069

RESUMO

Particles are frequently incorporated into clouds or precipitation, influencing climate by acting as cloud condensation or ice nuclei, taking up coatings during cloud processing, and removing species through wet deposition. Many of these particles, particularly ice nuclei, can remain suspended within cloud droplets/crystals as insoluble residues. While previous studies have measured the soluble or bulk mass of species within clouds and precipitation, no studies to date have determined the number concentration and size distribution of insoluble residues in precipitation or cloud water using in situ methods. Herein, for the first time we demonstrate that Nanoparticle Tracking Analysis (NTA) is a powerful in situ method for determining the total number concentration, number size distribution, and surface area distribution of insoluble residues in precipitation, both of rain and melted snow. The method uses 500 µL or less of liquid sample and does not require sample modification. Number concentrations for the insoluble residues in aqueous precipitation samples ranged from 2.0-3.0(±0.3)×108 particles cm-3, while surface area ranged from 1.8(±0.7)-3.2(±1.0)×107 µm2 cm-3. Number size distributions peaked between 133-150 nm, with both single and multi-modal character, while surface area distributions peaked between 173-270 nm. Comparison with electron microscopy of particles up to 10 µm show that, by number, > 97% residues are <1 µm in diameter, the upper limit of the NTA. The range of concentration and distribution properties indicates that insoluble residue properties vary with ambient aerosol concentrations, cloud microphysics, and meteorological dynamics. NTA has great potential for studying the role that insoluble residues play in critical atmospheric processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA