Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Plant Cell Rep ; 42(5): 953-956, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36840757

RESUMO

KEY MESSAGE: T-DNA and CRISPR/Cas9-mediated knockout of polyester synthase-like genes delays flowering time in Arabidopsis thaliana and Medicago sativa (alfalfa). Thus, we here present the first report of edited alfalfa with delayed flowering.


Assuntos
Arabidopsis , Medicago sativa , Medicago sativa/genética , Sistemas CRISPR-Cas/genética , Flores/genética , Arabidopsis/genética
2.
Microb Ecol ; 83(2): 501-505, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33966095

RESUMO

We have previously shown the extensive loss of genes during the domestication of alfalfa rhizobia and the high nitrous oxide emission associated with the extreme genomic instability of commercial inoculants. In the present note, we describe the molecular mechanism involved in the evolution of alfalfa rhizobia. Genomic analysis showed that most of the gene losses in inoculants are due to large genomic deletions rather than to small deletions or point mutations, a fact consistent with recurrent DNA double-strand breaks (DSBs) at numerous locations throughout the microbial genome. Genetic analysis showed that the loss of the NO-detoxifying enzyme HmpA in inoculants results in growth inhibition and high DSB levels under nitrosative stress, and large genomic deletions in planta but not in the soil. Therefore, besides its known function in the effective establishment of the symbiosis, HmpA can play a critical role in the preservation of the genomic integrity of alfalfa rhizobia under host-derived nitrosative stress.


Assuntos
Rhizobium , Genômica , Hempa , Medicago sativa , Rhizobium/genética , Simbiose
3.
Microb Ecol ; 84(4): 1133-1140, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34782938

RESUMO

Soybean is the most inoculant-consuming crop in the world, carrying strains belonging to the extremely related species Bradyrhizobium japonicum and Bradyrhizobium diazoefficiens. Currently, it is well known that B. japonicum has higher efficiency of soybean colonization than B. diazoefficiens, but the molecular mechanism underlying this differential symbiotic performance remains unclear. In the present study, genome resequencing of four spontaneous oxidative stress-resistant mutants derived from the commercial strain B. japonicum E109 combined with molecular and physiological studies allowed identifying an antioxidant cluster (BjAC) containing a transcriptional regulator (glxA) that controls the expression of a catalase (catA) and a phosphohydrolase (yfbR) related to the hydrolysis of hydrogen peroxide and oxidized nucleotides, respectively. Integrated synteny and phylogenetic analyses supported the fact that BjAC emergence in the B. japonicum lineage occurred after its divergence from the B. diazoefficiens lineage. The transformation of the model bacterium B. diazoefficiens USDA110 with BjAC from E109 significantly increased its ability to colonize soybean roots, experimentally recapitulating the beneficial effects of the occurrence of BjAC in B. japonicum. In addition, the glxA mutation significantly increased the nodulation competitiveness and plant growth-promoting efficiency of E109. Finally, the potential applications of these types of non-genetically modified mutant microbes in soybean production worldwide are discussed.


Assuntos
Bradyrhizobium , Glycine max , Glycine max/microbiologia , Antioxidantes/metabolismo , Filogenia , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Simbiose , Estresse Oxidativo
4.
Plant Cell Rep ; 41(2): 493-495, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34994854

RESUMO

KEYMESSAGE: We present the first report on base editing in alfalfa. Specifically, we showed edited alfalfa with tolerance to both sulfonylurea- and imidazolinone-type herbicides.


Assuntos
Edição de Genes/métodos , Herbicidas/farmacologia , Medicago sativa/efeitos dos fármacos , Medicago sativa/genética , Resistência a Herbicidas/genética , Herbicidas/química , Plantas Geneticamente Modificadas , Compostos de Sulfonilureia/farmacologia
5.
Microb Ecol ; 79(4): 1044-1053, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31828388

RESUMO

We have recently shown that commercial alfalfa inoculants (e.g., Sinorhizobium meliloti B399), which are closely related to the denitrifier model strain Sinorhizobium meliloti 1021, have conserved nitrate, nitrite, and nitric oxide reductases associated with the production of the greenhouse gas nitrous oxide (N2O) from nitrate but lost the N2O reductase related to the degradation of N2O to gas nitrogen. Here, we screened a library of nitrogen-fixing alfalfa symbionts originating from different ecoregions and containing N2O reductase genes and identified novel rhizobia (Sinorhizobium meliloti INTA1-6) exhibiting exceptionally low N2O emissions. To understand the genetic basis of this novel eco-friendly phenotype, we sequenced and analyzed the genomes of these strains, focusing on their denitrification genes, and found mutations only in the nitrate reductase structural gene napC. The evolutionary analysis supported that, in these natural strains, the denitrification genes were inherited by vertical transfer and that their defective nitrate reductase napC alleles emerged by independent spontaneous mutations. In silico analyses showed that mutations in this gene occurred in ssDNA loop structures with high negative free energy (-ΔG) and that the resulting mutated stem-loop structures exhibited increased stability, suggesting the occurrence of transcription-associated mutation events. In vivo assays supported that at least one of these ssDNA sites is a mutational hot spot under denitrification conditions. Similar benefits from nitrogen fixation were observed when plants were inoculated with the commercial inoculant B399 and strains INTA4-6, suggesting that the low-N2O-emitting rhizobia can be an ecological alternative to the current inoculants without resigning economic profitability.


Assuntos
Proteínas de Bactérias/genética , Clima , Mutação , Nitrato Redutases/genética , Óxido Nitroso/metabolismo , Sinorhizobium meliloti/fisiologia , Sequência de Aminoácidos , Argentina , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Nitrato Redutases/química , Nitrato Redutases/metabolismo , Filogenia , Alinhamento de Sequência , Sinorhizobium meliloti/genética
7.
Plant Cell ; 28(5): 1053-77, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27095837

RESUMO

In flowers with dry stigmas, pollen development, pollination, and pollen tube growth require spatial and temporal regulation of water and nutrient transport. To better understand the molecular mechanisms involved in reproductive processes, we characterized NIP4;1 and NIP4;2, two pollen-specific aquaporins of Arabidopsis thaliana. NIP4;1 and NIP4;2 are paralogs found exclusively in the angiosperm lineage. Although they have 84% amino acid identity, they displayed different expression patterns. NIP4;1 has low expression levels in mature pollen, while NIP4;2 expression peaks during pollen tube growth. Additionally, NIP4;1pro:GUS flowers showed GUS activity in mature pollen and pollen tubes, whereas NIP4;2pro:GUS flowers only in pollen tubes. Single T-DNA mutants and double artificial microRNA knockdowns had fewer seeds per silique and reduced pollen germination and pollen tube length. Transport assays in oocytes showed NIP4;1 and NIP4;2 function as water and nonionic channels. We also found that NIP4;1 and NIP4;2 C termini are phosphorylated by a pollen-specific CPK that modifies their water permeability. Survival assays in yeast indicated that NIP4;1 also transports ammonia, urea, boric acid, and H2O2 Thus, we propose that aquaporins NIP4;1 and NIP4;2 are exclusive components of the reproductive apparatus of angiosperms with partially redundant roles in pollen development and pollination.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Pólen/metabolismo , Amônia/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Ácidos Bóricos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Peróxido de Hidrogênio/metabolismo , Pólen/genética , Polinização/genética , Polinização/fisiologia , Ureia/metabolismo
8.
J Mol Evol ; 86(8): 554-565, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30238312

RESUMO

Increasing evidence indicates that N-fixing symbiosis has evolved several times in the N-fixing clade of angiosperms and that this evolution is driven by a single evolutionary innovation. However, the genetics of this ancestral predisposition to N-fixing symbiosis remains unclear. A natural candidate for such molecular innovation is the ammonium channel NOD26, the main protein component of the symbiosome membrane, which facilitates the plant uptake of the nitrogen fixed by symbiotic bacteria. Here, in concordance with the emergence of N-fixing symbiosis in angiosperms but not in ancestral plants, phylogenetic analysis showed that NOD26 belongs to an angiosperm-exclusive subgroup of aquaporins. Integrated genomic, phylogenetic, and gene expression analyses supported NOD26 occurrence in the N-fixing clade, the increase in the NOD26 copy number by block and tandem duplications in legumes, and the low-copy number or even the loss of NOD26 in non-legume species of the N-fixing clade, which correlated with the possibility to lose N-fixing symbiosis in legume and non-legume lineages. Metabolic reconstructions showed that retention of NOD26 in N-fixing precursor could represent an adaptive mechanism to bypass energy crisis during anaerobic stress by ammonium detoxification. Finally, we discuss the potential use of NOD26 to transfer N-fixation to non-N-fixing crops as cereals.


Assuntos
Compostos de Amônio/metabolismo , Magnoliopsida/metabolismo , Nitrogênio/metabolismo , Anaerobiose/fisiologia , Simbiose/fisiologia
9.
Theor Appl Genet ; 131(5): 1111-1123, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29397404

RESUMO

KEY MESSAGE: A novel process for the production of transgenic alfalfa varieties. Numerous species of legumes, including alfalfa, are critical factors for agroecosystems due to their ability to grow without nitrogen fertilizers derived from non-renewable fossil fuels, their contribution of organic nitrogen to the soil, and their increased nutritional value. Alfalfa is the main source of vegetable proteins in meat and milk production systems worldwide. Despite the economic and ecological importance of this autotetraploid and allogamous forage crop, little progress has been made in the incorporation of transgenic traits into commercial alfalfa. This is mainly due to the unusually strong transgene silencing and complex reproductive behavior of alfalfa, which limit the production of events with high transgene expression and the introgression of selected events within heterogeneous synthetic populations, respectively. In this report, we describe a novel procedure, called supertransgene process, where a glufosinate-tolerant alfalfa variety was developed using a single event containing the BAR transgene associated with an inversion. This approach can be used to maximize the expression of transgenic traits into elite alfalfa germplasm and to reduce the cost of production of transgenic alfalfa cultivars, contributing to the public improvement of this legume forage and other polyploid and outcrossing crop species.


Assuntos
Engenharia Genética/métodos , Medicago sativa/genética , Plantas Geneticamente Modificadas/genética , Produtos Agrícolas/genética , Resistência a Herbicidas/genética , Heterozigoto , Transgenes
10.
J Theor Biol ; 456: 29-33, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30063924

RESUMO

After gene duplication, paralogous genes evolve independently, and consequently, the new proteins encoded by these duplicated genes are exposed to changes in their subcellular location. Although there are increasing evidence that phylogenetically related proteins play different functions in different subcellular compartments, the number of evolutionary steps required for the emergence of a novel protein with a novel subcellular localization remains unclear. Regarding this intriguing topic, here we examine in depth our previous reports describing both intracellular and extracellular polyhydroxybutyrate polymerases (PhaC) in the Pseudomonadales group. The recapitulation of the intracellular-to-extracellular localization switch of PhaC in these strains shows a gradual evolution from a simple cytosolic PhaC form to a complex extracellular PhaC form specifically secreted via the type 1 secretion system. This gradual evolution includes several adaptive and pre-adaptive changes at the genomic, genetic and enzymatic levels, which are intimately related to the lifestyle of organisms during the evolution of protein localization. We conclude that the protein localization switch can be an extremely complex process in nature.


Assuntos
Aciltransferases/metabolismo , Citosol/enzimologia , Evolução Molecular , Espaço Extracelular/enzimologia , Pseudomonas/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Filogenia , Transporte Proteico/genética , Pseudomonas/genética , Alinhamento de Sequência
11.
Microb Ecol ; 76(3): 579-583, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29476343

RESUMO

There are increasing evidences that horizontal gene transfer (HGT) is a critical mechanism of bacterial evolution, while its complete impact remains unclear. A main constraint of HGT effects on microbial evolution seems to be the conservation of the function of the horizontally transferred genes. From this perspective, inflexible nomenclature and functionality criteria have been established for some mobile genetic elements such as pathogenic and symbiotic islands. Adhesion is a universal prerequisite for both beneficial and pathogenic plant-microbe interactions, and thus, adhesion systems (e.g., the Lap cluster) are candidates to have a dual function depending on the genomic background. In this study, we showed that the virulent factor Lap of the phytopathogen Erwinia carotovora SCRI1043, which is located within a genomic island, was acquired by HGT and probably derived from Pseudomonas. The transformation of the phytopathogen Erwinia pyrifoliae Ep1/96 with the beneficial factor Lap from the plant growth-promoting bacterium Pseudomonas fluorescens Pf-5 significantly increased its natural virulence, experimentally recapitulating the beneficial-to-virulence functional switch of the Lap cluster via HGT. To our knowledge, this is the first report of a functional switch of an individual gene or a cluster of genes mediated by HGT.


Assuntos
Proteínas de Bactérias/genética , Transferência Genética Horizontal , Medicago sativa/microbiologia , Pectobacterium carotovorum/genética , Doenças das Plantas/microbiologia , Pseudomonas fluorescens/genética , Fatores de Virulência/genética , Proteínas de Bactérias/metabolismo , Medicago sativa/crescimento & desenvolvimento , Pectobacterium carotovorum/metabolismo , Filogenia , Pseudomonas fluorescens/metabolismo , Fatores de Virulência/metabolismo
12.
Microb Ecol ; 76(2): 299-302, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29330647

RESUMO

As other legume crops, alfalfa cultivation increases the emission of the greenhouse gas nitrous oxide (N2O). Since legume-symbiotic nitrogen-fixing bacteria play a crucial role in this emission, it is important to understand the possible impacts of rhizobial domestication on the evolution of denitrification genes. In comparison with the genomes of non-commercial strains, those of commercial alfalfa inoculants exhibit low total genome size, low number of ORFs and high numbers of both frameshifted genes and pseudogenes, suggesting a dramatic loss of genes during bacterial domestication. Genomic analysis focused on denitrification genes revealed that commercial strains have perfectly conserved the nitrate (NAP), nitrite (NIR) and nitric (NOR) reductase clusters related to the production of N2O from nitrate but completely lost the nitrous oxide (NOS) reductase cluster (nosRZDFYLX genes) associated with the reduction of N2O to gas nitrogen. Based on these results, we propose future screenings for alfalfa-nodulating isolates containing both nitrogen fixation and N2O reductase genes for environmental sustainability of alfalfa production.


Assuntos
Bactérias/genética , Medicago sativa/microbiologia , Família Multigênica , Oxirredutases/genética , Rhizobium/genética , Bactérias/metabolismo , Desnitrificação/genética , Evolução Molecular , Tamanho do Genoma , Nitratos/metabolismo , Nitritos/metabolismo , Fixação de Nitrogênio , Óxido Nitroso/metabolismo , Simbiose
14.
Biotechnol Lett ; 40(9-10): 1419-1423, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29797149

RESUMO

OBJECTIVES: Identification of novel microbial factors contributing to plant protection against abiotic stress. RESULTS: The genome of plant growth-promoting bacterium Pseudomonas fluorescens FR1 contains a short mobile element encoding a novel type of extracellular polyhydroxybutyrate (PHB) polymerase (PhbC) associated with a type I secretion system. Genetic analysis using a phbC mutant strain and plants showed that this novel extracellular enzyme is related to the PHB production in planta and suggests that PHB could be a beneficial microbial compound synthesized during plant adaptation to cold stress. CONCLUSION: Extracellular PhbC can be used as a new tool for improve crop production under abiotic stress.


Assuntos
Aciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Pseudomonas fluorescens/fisiologia , Triticum/fisiologia , Aciltransferases/genética , Proteínas de Bactérias/genética , Clorofila/metabolismo , Endófitos , Genoma Bacteriano , Mutação , Pseudomonas fluorescens/genética , Estresse Fisiológico/fisiologia , Triticum/microbiologia
15.
J Mol Evol ; 85(3-4): 79-83, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28828631

RESUMO

Despite the vast screening for natural nitrogen-fixing isolates by public and private consortia, no significant progresses in the production of improved nitrogen-fixing inoculants for alfalfa production have been made in the last years. Here, we present a comprehensive characterization of the nitrogen-fixing strain Ensifer meliloti B399 (originally named Rhizobium meliloti 102F34), probably the inoculant most widely used in alfalfa production since the 1960s. Complete nucleotide sequence and genome analysis of strain B399 showed that the three replicons present in this commercial strain and the model bacterium Ensifer meliloti 1021 are extremely similar to each other in terms of nucleotide identity and synteny conservation. In contrast to that observed in B399-treated plants, inoculation of plants with strain 1021 did not improve nitrogen content in different alfalfa cultivars under field conditions, suggesting that a small genomic divergence can drastically impact on the symbiotic phenotype. Therefore, in addition to the traditional screening of natural nitrogen-fixing isolates, the genome engineering of model strains could be an attractive strategy to improve nitrogen fixation in legume crops.


Assuntos
Evolução Biológica , Genoma Bacteriano , Fixação de Nitrogênio/genética , Sinorhizobium meliloti/genética , Simbiose , Genômica , Medicago sativa/genética , Medicago sativa/fisiologia , Análise de Sequência de DNA , Sinorhizobium meliloti/metabolismo , Sinorhizobium meliloti/fisiologia , Sintenia
16.
Biophys J ; 110(6): 1312-21, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-27028641

RESUMO

Many plasma membrane channels form oligomeric assemblies, and heterooligomerization has been described as a distinctive feature of some protein families. In the particular case of plant plasma membrane aquaporins (PIPs), PIP1 and PIP2 monomers interact to form heterotetramers. However, the biological properties of the different heterotetrameric configurations formed by PIP1 and PIP2 subunits have not been addressed yet. Upon coexpression of tandem PIP2-PIP1 dimers in Xenopus oocytes, we can address, for the first time to our knowledge, the functional properties of single heterotetrameric species having 2:2 stoichiometry. We have also coexpressed PIP2-PIP1 dimers with PIP1 and PIP2 monomers to experimentally investigate the localization and biological activity of each tetrameric assembly. Our results show that PIP2-PIP1 heterotetramers can assemble with 3:1, 1:3, or 2:2 stoichiometry, depending on PIP1 and PIP2 relative expression in the cell. All PIP2-PIP1 heterotetrameric species localize at the plasma membrane and present the same water transport capacity. Furthermore, the contribution of any heterotetrameric assembly to the total water transport through the plasma membrane doubles the contribution of PIP2 homotetramers. Our results also indicate that plasma membrane water transport can be modulated by the coexistence of different tetrameric species and by intracellular pH. Moreover, all the tetrameric species present similar cooperativity behavior for proton sensing. These findings throw light on the functional properties of PIP tetramers, showing that they have flexible stoichiometry dependent on the quantity of PIP1 and PIP2 molecules available. This represents, to our knowledge, a novel regulatory mechanism to adjust water transport across the plasma membrane.


Assuntos
Aquaporinas/química , Aquaporinas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Multimerização Proteica , Água/metabolismo , Animais , Transporte Biológico , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Concentração de Íons de Hidrogênio , Osmose , Prótons , Xenopus laevis/metabolismo
17.
Environ Microbiol ; 18(10): 3522-3534, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27198923

RESUMO

A main goal of biological nitrogen fixation research has been to expand the nitrogen-fixing ability to major cereal crops. In this work, we demonstrate the use of the efficient nitrogen-fixing rhizobacterium Pseudomonas protegens Pf-5 X940 as a chassis to engineer the transfer of nitrogen fixed by BNF to maize and wheat under non-gnotobiotic conditions. Inoculation of maize and wheat with Pf-5 X940 largely improved nitrogen content and biomass accumulation in both vegetative and reproductive tissues, and this beneficial effect was positively associated with high nitrogen fixation rates in roots. 15 N isotope dilution analysis showed that maize and wheat plants obtained substantial amounts of fixed nitrogen from the atmosphere. Pf-5 X940-GFP-tagged cells were always reisolated from the maize and wheat root surface but never from the inner root tissues. Confocal laser scanning microscopy confirmed root surface colonization of Pf-5 X940-GFP in wheat plants, and microcolonies were mostly visualized at the junctions between epidermal root cells. Genetic analysis using biofilm formation-related Pseudomonas mutants confirmed the relevance of bacterial root adhesion in the increase in nitrogen content, biomass accumulation and nitrogen fixation rates in wheat roots. To our knowledge, this is the first report of robust BNF in major cereal crops.


Assuntos
Inoculantes Agrícolas/fisiologia , Produtos Agrícolas/microbiologia , Fixação de Nitrogênio , Nitrogênio/metabolismo , Pseudomonas/fisiologia , Inoculantes Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Pseudomonas/genética , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Triticum/microbiologia , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Zea mays/microbiologia
18.
Plant Cell Rep ; 35(9): 1987-90, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27447893

RESUMO

Alfalfa is the most important forage legume worldwide. However, similar to other minor forage crops, it is usually harvested along with weeds, which decrease its nutrient quality and thus reduce its high value in the market. In addition, weeds reduce alfalfa yield by about 50 %. Although weeds are the limiting factor for alfalfa production, little progress has been made in the incorporation of herbicide-tolerant traits into commercial alfalfa. This is partially due to the high times and costs needed for the production of vast numbers of transgenic alfalfa events as an empirical approach to bypass the random transgenic silencing and for the identification of an event with optimal transgene expression. In this focus article, we report the complete sequence of pPZP200BAR and the extremely high efficiency of this binary vector in alfalfa transformation, opening the way for rapid and inexpensive production of transgenic events for alfalfa improvement public programs.


Assuntos
Custos e Análise de Custo , Biblioteca Gênica , Técnicas Genéticas/economia , Vetores Genéticos/metabolismo , Medicago sativa/genética , Análise de Sequência de DNA , Plantas Geneticamente Modificadas , Plasmídeos/metabolismo , Fatores de Tempo , Transformação Genética
19.
Plant Cell Rep ; 35(5): 1205-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26883227

RESUMO

Similar to other plant species, Arabidopsis has a huge repertoire of predicted helicases, including the eIF4AIII factor, a putative component of the exon junction complex related to mRNA biogenesis. In this article, we integrated evolutionary and functional approaches to have a better understanding of eIF4AIII function in plants. Phylogenetic analysis showed that the mRNA biogenesis-related helicase eIF4AIII is the ortholog of the stress-related helicases PDH45 from Pisum sativum and MH1 from Medicago sativa, suggesting evolutionary and probably functional equivalences between mRNA biogenesis and stress-related plant helicases. Molecular and genetic analyses confirmed the relevance of eIF4AIII during abiotic stress adaptation in Arabidopsis. Therefore, in addition to its function in mRNA biogenesis, eIF4AIII can play a role in abiotic stress adaptation.


Assuntos
Adaptação Fisiológica , Arabidopsis/enzimologia , Fator de Iniciação 4A em Eucariotos/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Fator de Iniciação 4A em Eucariotos/genética , Éxons/genética , Filogenia , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Transcrição Gênica
20.
J Mol Evol ; 81(3-4): 84-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26374754

RESUMO

The vast majority of Pseudomonas species are unable to fix atmospheric nitrogen. Although several studies have demonstrated that some strains belonging to the genus Pseudomonas sensu stricto do have the ability to fix nitrogen by the expression of horizontally acquired nitrogenase, little is known about the mechanisms of nitrogenase adaptation to the new bacterial host. Recently, we transferred the nitrogen fixation island from Pseudomonas stutzeri A1501 to the non-nitrogen-fixing bacterium Pseudomonas protegens Pf-5, and interestingly, the resulting recombinant strain Pf-5 X940 showed an uncommon phenotype of constitutive nitrogenase activity. Here, we integrated evolutionary and functional approaches to elucidate this unusual phenotype. Phylogenetic analysis showed that polyhydroxybutyrate (PHB) biosynthesis genes from natural nitrogen-fixing Pseudomonas strains have been acquired by horizontal transfer. Contrary to Pf-5 X940, its derived PHB-producing strain Pf-5 X940-PHB exhibited the inhibition of nitrogenase activity under nitrogen-excess conditions, and displayed the typical switch-on phenotype observed in natural nitrogen-fixing strains after nitrogen deficiency. This indicates a competition between PHB production and nitrogen fixation. Therefore, we propose that horizontal transfer of PHB biosynthesis genes could be an ancestral mechanism of regulation of horizontally acquired nitrogenases in the genus Pseudomonas.


Assuntos
Nitrogenase/genética , Pseudomonas/enzimologia , Evolução Molecular , Transferência Genética Horizontal , Genes Bacterianos , Fixação de Nitrogênio/genética , Nitrogenase/biossíntese , Filogenia , Pseudomonas/genética , Pseudomonas stutzeri/enzimologia , Pseudomonas stutzeri/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA