Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Eur J Nucl Med Mol Imaging ; 46(4): 821-830, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30506455

RESUMO

PURPOSE: To compare [18F]-fluorodeoxyglucose (FDG) and [18F]-sodium fluoride (NaF) positron emission tomography/computed tomography (PET/CT) with whole-body magnetic resonance with diffusion-weighted imaging (WB-MRI), for endocrine therapy response prediction at 8 weeks in bone-predominant metastatic breast cancer. PATIENTS AND METHODS: Thirty-one patients scheduled for endocrine therapy had up to five bone metastases measured [FDG, NaF PET/CT: maximum standardized uptake value (SUVmax); WB-MRI: median apparent diffusion coefficient (ADCmed)] at baseline and 8 weeks. To detect the flare phenomenon, a 12-week NaF PET/CT was also performed if 8-week SUVmax increased. A 25% parameter change differentiated imaging progressive disease (PD) from non-PD and was compared to a 24-week clinical reference standard and progression-free survival (PFS). RESULTS: Twenty-two patients (median age, 58.6 years, range, 40-79 years) completing baseline and 8-week imaging were included in the final analysis. Per-patient % change in NaF SUVmax predicted 24-week clinical PD with sensitivity, specificity and accuracy of 60, 73.3, and 70%, respectively. For FDG SUVmax the results were 0, 100, and 76.2% and for ADCmed, 0, 100 and 72.2%, respectively. PFS < 24 weeks was associated with % change in SUVmax (NaF: 41.7 vs. 0.7%, p = 0.039; FDG: - 4.8 vs. - 28.6%, p = 0.005) but not ADCmed (- 0.5 vs. 10.1%, p = 0.098). Interlesional response heterogeneity occurred in all modalities and NaF flare occurred in seven patients. CONCLUSIONS: FDG PET/CT and WB-MRI best predicted clinical non-PD and both FDG and NaF PET/CT predicted PFS < 24 weeks. Lesional response heterogeneity occurs with all modalities and flare is common with NaF PET/CT.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias Ósseas/terapia , Neoplasias da Mama/patologia , Imagem de Difusão por Ressonância Magnética , Fluoretos , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Adulto , Idoso , Neoplasias Ósseas/diagnóstico por imagem , Feminino , Humanos , Pessoa de Meia-Idade , Prognóstico , Resultado do Tratamento , Imagem Corporal Total
2.
Eur J Nucl Med Mol Imaging ; 45(6): 898-903, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29396636

RESUMO

PURPOSE: Osteoclast activity is an important factor in the pathogenesis of skeletal metastases and is a potential therapeutic target. This study aimed to determine if selective uptake of 99mTc-maraciclatide, a radiopharmaceutical targeting αvß3 integrin, occurs in prostate cancer (PCa) bone metastases and to observe the changes following systemic therapy. METHODS: The study group comprised 17 men with bone-predominant metastatic PCa who underwent whole-body planar and single-photon emission computed tomography/computed tomography (SPECT/CT) imaging with 99mTc-maraciclatide before (n = 17) and 12 weeks after (n = 11) starting treatment with abiraterone. Tumour to normal bone (T:N) ratios, tumour to muscle (T:M) ratios and CT Hounsfield units (HU) were measured in up to five target metastases in each subject. An oncologist blinded to study scans assessed clinical responses up to 24 weeks using conventional criteria. RESULTS: Before treatment, metastases showed specific 99mTc-maraciclatide accumulation (mean planar T:N and T:M ratios 1.43 and 3.06; SPECT T:N and T:M ratios 3.1 and 5.19, respectively). Baseline sclerotic lesions (389-740 HU) showed lower T:M ratios (4.22 vs. 7.04, p = 0.02) than less sclerotic/lytic lesions (46-381 HU). Patients with progressive disease (PD; n = 5) showed increased planar T:N and T:M ratios (0.29 and 12.1%, respectively) and SPECT T:N and T:M ratios (11.9 and 20.2%, respectively). Patients without progression showed decreased planar T:N and T:M ratios (0.27 and -8.0%, p = 1.0 and 0.044, respectively) and SPECT T:N and T:M ratios (-21.9, and -27.2%, p = 0.3 and 0.036, respectively). The percentage change in CT HU was inversely correlated with the percentage change in SPECT T:M ratios (r = -0.59, p = 0.006). CONCLUSIONS: 99mTc-maraciclatide accumulates in PCa bone metastases in keeping with increased αvß3 integrin expression. Greater activity in metastases with lower CT density suggests that uptake is related to osteoclast activity. Changes in planar and SPECT T:M ratios after 12 weeks of treatment differed between patients with and without PD and 99mTc-maraciclatide imaging may be a potential method for assessing early response.


Assuntos
Neoplasias Ósseas/metabolismo , Integrina alfaVbeta3/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único , Idoso , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Humanos , Masculino , Cintilografia , Compostos Radiofarmacêuticos , Tomografia Computadorizada por Raios X
3.
Clin Radiol ; 71(7): 620-31, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26997430

RESUMO

There is growing evidence that molecular imaging of bone metastases with positron-emission tomography (PET) can improve diagnosis and treatment response assessment over current conventional standard imaging methods, although cost-effectiveness has not been assessed. In most cancer types, 2-[(18)F]-fluoro-2-deoxy-d-glucose ((18)F-FDG)-PET is an accurate method for detecting bone metastases. For example, in breast cancer, combined (18)F-FDG-PET and computed tomography (CT) is more sensitive at detecting bone metastases than (99m)technetium (Tc)-labelled diphosphonate planar bone scintigraphy (BS) and there is increasing evidence to support the use of serial (18)F-FDG-PET for the assessment of osseous response to treatment. Preliminary data suggest improved diagnostic accuracy of (18)F-FDG-PET-CT in a number of other malignancies including lung, thyroid, head and neck, gastro-oesophageal cancers, and osteosarcoma. As a bone-specific tracer, there is accumulating evidence to support the use of sodium (18)F-fluoride ((18)F-NaF) PET-CT in the diagnosis of skeletal metastases in breast and prostate cancer, although relatively little data are available to support its use for assessment of treatment response. In prostate cancer, (11)C-choline and (18)F-choline PET-CT have better specificities than (18)F-NaF-PET-CT, but equivalent sensitivities in the detection of bone metastases. We review the current literature for staging and response assessment of bone metastases in different cancers.


Assuntos
Neoplasias Ósseas/diagnóstico por imagem , Colina , Fluordesoxiglucose F18 , Aumento da Imagem/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Medronato de Tecnécio Tc 99m , Meios de Contraste , Medicina Baseada em Evidências , Humanos , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
Mol Imaging Biol ; 21(4): 781-789, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30250989

RESUMO

PURPOSE: To establish whether first-order statistical features from [18F]fluoride and 2-deoxy-2-[18F] fluoro-D-glucose ([18F]FDG) positron emission tomography/x-ray computed tomography (PET/CT) demonstrate incremental value in skeletal metastasis response assessment compared with maximum standardised uptake value (SUVmax). PROCEDURES: Sixteen patients starting endocrine treatment for de novo or progressive breast cancer bone metastases were prospectively recruited to undergo [18F]fluoride and [18F]FDG PET/CT scans before and 8 weeks after treatment. Percentage changes in SUV parameters, metabolic tumour volume (MTV), total lesion metabolism (TLM), standard deviation (SD), entropy, uniformity and absolute changes in kurtosis and skewness, from the same ≤ 5 index lesions, were measured. Clinical response to 24 weeks, assessed by two experienced oncologists blinded to PET/CT imaging findings, was used as a reference standard and associations were made between parameters and progression free and overall survival. RESULTS: [18F]fluoride PET/CT: In four patients (20 lesions) with progressive disease (PD), TLM and kurtosis predicted PD better than SUVmax on a patient basis (4, 4 and 3 out of 4, respectively) and TLM, entropy, uniformity and skewness on a lesion basis (18, 16, 16, 18 and 15 out of 20, respectively). Kurtosis was independently associated with PFS (p = 0.033) and OS (p = 0.008) on Kaplan-Meier analysis. [18F]FDG PET: No parameter provided incremental value over SUVmax in predicting PD or non-PD. TLM was significantly associated with OS (p = 0.041) and skewness with PFS (p = 0.005). Interlesional heterogeneity of response was seen in 11/16 and 8/16 patients on [18F]fluoride and [18F]FDG PET/CT, respectively. CONCLUSION: With [18F]fluoride PET/CT, some first-order features, including those that take into account lesion volume but also some heterogeneity parameters, provide incremental value over SUVmax in predicting clinical response and survival in breast cancer patients with bone metastases treated with endocrine therapy. With [18F]FDG PET/CT, no first-order parameters were more accurate than SUVmax although TLM and skewness were associated with OS and PFS, respectively. Intra-patient heterogeneity of response occurs commonly between metastases with both tracers and most parameters.


Assuntos
Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/secundário , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Fluoretos/química , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Adulto , Idoso , Progressão da Doença , Intervalo Livre de Doença , Feminino , Fluordesoxiglucose F18 , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade
5.
J Nucl Med ; 60(3): 322-327, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30042160

RESUMO

Our purpose was to establish whether noninvasive measurement of changes in 18F-fluoride metabolic flux to bone mineral (Ki) by PET/CT can provide incremental value in response assessment of bone metastases in breast cancer compared with SUVmax and SUVmeanMethods: Twelve breast cancer patients starting endocrine treatment for de novo or progressive bone metastases were included. Static 18F-fluoride PET/CT scans were acquired 60 min after injection, before and 8 wk after commencing treatment. Venous blood samples were taken at 55 and 85 min after injection to measure plasma 18F-fluoride activity concentrations, and Ki in individual bone metastases was calculated using a previously validated method. Percentage changes in Ki, SUVmax, and SUVmean were calculated from the same index lesions (≤5 lesions) from each patient. Clinical response up to 24 wk, assessed in consensus by 2 experienced oncologists masked to PET imaging findings, was used as a reference standard. Results: Of the 4 patients with clinically progressive disease (PD), mean Ki significantly increased (>25%) in all, SUVmax in 3, and SUVmean in 2. Of the 8 non-PD patients, Ki decreased or remained stable in 7, SUVmax in 5, and SUVmean in 6. A significant mean percentage increase from baseline for Ki, compared with SUVmax and SUVmean, occurred in the 4 patients with PD (89.7% vs. 41.8% and 43.5%, respectively; P < 0.001). Conclusion: After 8 wk of endocrine treatment for bone-predominant metastatic breast cancer, Ki more reliably differentiated PD from non-PD than did SUVmax and SUVmean, probably because measurement of SUV underestimates fluoride clearance by not considering changes in input function.


Assuntos
Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Fluoretos/metabolismo , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Adulto , Idoso , Transporte Biológico , Neoplasias Ósseas/metabolismo , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Pessoa de Meia-Idade
6.
Int J Radiat Oncol Biol Phys ; 102(4): 1083-1089, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29395627

RESUMO

PURPOSE: Radiomics describes the extraction of multiple, otherwise invisible, features from medical images that, with bioinformatic approaches, can be used to provide additional information that can predict underlying tumor biology and behavior. METHODS AND MATERIALS: Radiomic signatures can be used alone or with other patient-specific data to improve tumor phenotyping, treatment response prediction, and prognosis, noninvasively. The data describing 18F-fluorodeoxyglucose positron emission tomography radiomics, often using texture or heterogeneity parameters, are increasing rapidly. RESULTS: In relation to radiation therapy practice, early data have reported the use of radiomic approaches to better define tumor volumes and predict radiation toxicity and treatment response. CONCLUSIONS: Although at an early stage of development, with many technical challenges remaining and a need for standardization, promise nevertheless exists that PET radiomics will contribute to personalized medicine, especially with the availability of increased computing power and the development of machine-learning approaches for imaging.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons , Humanos , Radioterapia
7.
EJNMMI Res ; 7(1): 60, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28748524

RESUMO

BACKGROUND: Measures of tumour heterogeneity derived from 18-fluoro-2-deoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) scans are increasingly reported as potential biomarkers of non-small cell lung cancer (NSCLC) for classification and prognostication. Several segmentation algorithms have been used to delineate tumours, but their effects on the reproducibility and predictive and prognostic capability of derived parameters have not been evaluated. The purpose of our study was to retrospectively compare various segmentation algorithms in terms of inter-observer reproducibility and prognostic capability of texture parameters derived from non-small cell lung cancer (NSCLC) 18F-FDG PET/CT images. Fifty three NSCLC patients (mean age 65.8 years; 31 males) underwent pre-chemoradiotherapy 18F-FDG PET/CT scans. Three readers segmented tumours using freehand (FH), 40% of maximum intensity threshold (40P), and fuzzy locally adaptive Bayesian (FLAB) algorithms. Intraclass correlation coefficient (ICC) was used to measure the inter-observer variability of the texture features derived by the three segmentation algorithms. Univariate cox regression was used on 12 commonly reported texture features to predict overall survival (OS) for each segmentation algorithm. Model quality was compared across segmentation algorithms using Akaike information criterion (AIC). RESULTS: 40P was the most reproducible algorithm (median ICC 0.9; interquartile range [IQR] 0.85-0.92) compared with FLAB (median ICC 0.83; IQR 0.77-0.86) and FH (median ICC 0.77; IQR 0.7-0.85). On univariate cox regression analysis, 40P found 2 out of 12 variables, i.e. first-order entropy and grey-level co-occurence matrix (GLCM) entropy, to be significantly associated with OS; FH and FLAB found 1, i.e., first-order entropy. For each tested variable, survival models for all three segmentation algorithms were of similar quality, exhibiting comparable AIC values with overlapping 95% CIs. CONCLUSIONS: Compared with both FLAB and FH, segmentation with 40P yields superior inter-observer reproducibility of texture features. Survival models generated by all three segmentation algorithms are of at least equivalent utility. Our findings suggest that a segmentation algorithm using a 40% of maximum threshold is acceptable for texture analysis of 18F-FDG PET in NSCLC.

8.
PET Clin ; 11(3): 305-18, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27321034

RESUMO

In oncology, the skeleton is one of the most frequently encountered sites for metastatic disease and thus early detection not only has an impact on an individual patient's management but also on the overall outcome. Multiparametric and multimodal hybrid PET/computed tomography and PET/MR imaging have revolutionized imaging for bone metastases, but irrespective of tumor biology or morphology of the bone lesion it remains unclear which imaging modality is the most clinically relevant to guide individualized cancer care. In this review, we highlight the current clinical challenges of PET imaging in evaluation and quantification of skeletal tumor burden and its impact on personalized cancer management.


Assuntos
Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/secundário , Tomografia por Emissão de Pósitrons/métodos , Medicina de Precisão/métodos , Humanos
9.
J Nucl Med ; 57 Suppl 1: 27S-33S, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26834098

RESUMO

Bone metastases are common in patients with advanced breast cancer. Given the significant associated morbidity, the introduction of new, effective systemic therapies, and the improvement in survival time, early detection and response assessment of skeletal metastases have become even more important. Although planar bone scanning has recognized limitations, in particular, poor specificity in staging and response assessment, it continues to be the main method in current clinical practice for staging of the skeleton in patients at risk of bone metastases. However, the accuracy of bone scanning can be improved with the addition of SPECT/CT. There have been reported improvements in sensitivity and specificity for staging of the skeleton with either bone-specific PET/CT tracers, such as (18)F-NaF, or tumor-specific tracers, such as (18)F-FDG, although these methods are less widely available and more costly. There is a paucity of data on the use of (18)F-NaF PET/CT for response assessment in breast cancer, but there is increasing evidence that (18)F-FDG PET/CT may improve on current methods in this regard. At the same time, interest and experience in using whole-body morphologic MRI augmented with diffusion-weighted imaging for both staging and response assessment in the skeleton have been increasing. However, data on comparisons of these methods with PET methods to determine the best technique for current clinical practice or for clinical trials are insufficient. There are early data supporting the use (18)F-FDG PET/MRI to assess malignant disease in the skeleton, with the possibility of taking advantage of the synergies offered by combining morphologic, physiologic, and metabolic imaging.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias Ósseas/terapia , Neoplasias da Mama/patologia , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Neoplasias Ósseas/diagnóstico por imagem , Osso e Ossos/diagnóstico por imagem , Feminino , Humanos
10.
Clin Transl Imaging ; 4(6): 439-447, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27933280

RESUMO

The bone scan continues to be recommended for both the staging and therapy response assessment of skeletal metastases from prostate cancer. However, it is widely recognised that bone scans have limited sensitivity for disease detection and is both insensitive and non-specific for determining treatment response, at an early enough time point to be clinically useful. We, therefore, review the evolving roles of nuclear medicine and radiology for this application. We have reviewed the published literature reporting recent developments in imaging bone metastases in prostate cancer, and provide a balanced synopsis of the state of the art. The development of single-photon emission computed tomography combined with computed tomography has improved detection sensitivity and specificity but has not yet been shown to lead to improvements in monitoring therapy. A number of bone-specific and tumour-specific tracers for positron emission tomography/computed tomography (PET/CT) are now available for advanced prostate cancer that show promise in both clinical settings. At the same time, the development of whole-body magnetic resonance imaging (WB-MRI) that incorporates diffusion-weighted imaging also offers significant improvements for detection and therapy response assessment. There are emerging data showing comparative SPECT/CT, PET/CT, and WB-MRI test performance for disease detection, but no compelling data on the usefulness of these technologies in response assessment have yet emerged.

11.
Clin Nucl Med ; 41(1): e44-50, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26402127

RESUMO

Our ability to accurately assess the skeleton for metastases in breast and prostate cancers has improved significantly in recent years with hybrid imaging methods. Nevertheless, no consensus has been reached on the best imaging modality for diagnosis and treatment response assessment of skeletal disease. Hybrid SPECT/CT has low false-positive and false-negative rates compared with planar bone scintigraphy (BS) or BS augmented with SPECT in breast and prostate cancers. In breast cancer, 18F-FDG PET is more sensitive and accurate at detecting bone metastases than BS. Currently, little evidence has accrued to support the superiority of 18F-fluoride (18F-NaF) PET in diagnosing osseous metastases or monitoring treatment response in breast cancer when compared with conventional imaging. In prostate cancer, the sensitivities of 18F-NaF PET/CT, 18F-fluorocholine (18F-choline), or 11C-choline PET/CT are equivalent, although 11C-/18F-choline PET/CT scans are more specific. Whole-body MRI, using anatomical sequences complemented by diffusion-weighted MRI, shows early evidence of utility for diagnosis and monitoring therapy response. We review the literature for staging and response assessment in metastatic breast and prostate cancer. While staging accuracy has significantly improved with hybrid imaging, optimal methods for assessing early treatment response have not been determined, and this is an area of active research.


Assuntos
Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Imagem Molecular/métodos , Neoplasias da Próstata/patologia , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/fisiopatologia , Neoplasias da Mama/diagnóstico por imagem , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Cintilografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA