Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 46(5): 2636-2647, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29390080

RESUMO

Recognition of DNA by proteins depends on DNA sequence and structure. Often unanswered is whether the structure of naked DNA persists in a protein-DNA complex, or whether protein binding changes DNA shape. While X-ray structures of protein-DNA complexes are numerous, the structure of naked cognate DNA is seldom available experimentally. We present here an experimental and computational analysis pipeline that uses hydroxyl radical cleavage to map, at single-nucleotide resolution, DNA minor groove width, a recognition feature widely exploited by proteins. For 11 protein-DNA complexes, we compared experimental maps of naked DNA minor groove width with minor groove width measured from X-ray co-crystal structures. Seven sites had similar minor groove widths as naked DNA and when bound to protein. For four sites, part of the DNA in the complex had the same structure as naked DNA, and part changed structure upon protein binding. We compared the experimental map with minor groove patterns of DNA predicted by two computational approaches, DNAshape and ORChID2, and found good but not perfect concordance with both. This experimental approach will be useful in mapping structures of DNA sequences for which high-resolution structural data are unavailable. This approach allows probing of protein family-dependent readout mechanisms.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/química , Sítios de Ligação , DNA/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Nucleotídeos/química , Ligação Proteica
2.
Nucleic Acids Res ; 42(20): 12758-67, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25313156

RESUMO

While hydroxyl radical cleavage is widely used to map RNA tertiary structure, lack of mechanistic understanding of strand break formation limits the degree of structural insight that can be obtained from this experiment. Here, we determine how individual ribose hydrogens of sarcin/ricin loop RNA participate in strand cleavage. We find that substituting deuterium for hydrogen at a ribose 5'-carbon produces a kinetic isotope effect on cleavage; the major cleavage product is an RNA strand terminated by a 5'-aldehyde. We conclude that hydroxyl radical abstracts a 5'-hydrogen atom, leading to RNA strand cleavage. We used this approach to obtain structural information for a GUA base triple, a common tertiary structural feature of RNA. Cleavage at U exhibits a large 5' deuterium kinetic isotope effect, a potential signature of a base triple. Others had noted a ribose-phosphate hydrogen bond involving the G 2'-OH and the U phosphate of the GUA triple, and suggested that this hydrogen bond contributes to backbone rigidity. Substituting deoxyguanosine for G, to eliminate this hydrogen bond, results in a substantial decrease in cleavage at G and U of the triple. We conclude that this hydrogen bond is a linchpin of backbone structure around the triple.


Assuntos
Radical Hidroxila/química , RNA/química , Aldeídos/análise , Deutério , Hidrogênio/química , Ligação de Hidrogênio , Modelos Moleculares , Conformação de Ácido Nucleico , Clivagem do RNA
3.
Int J Cancer ; 125(12): 2970-7, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19536775

RESUMO

CD22 is broadly expressed on human B cell lymphomas. Monoclonal anti-CD22 antibodies alone, or coupled to toxins, have been used to selectively target these tumors both in SCID mice with xenografted human lymphoma cell lines and in patients with B cell lymphomas. Single-walled carbon nanotubes (CNTs) attached to antibodies or peptides represent another approach to targeting cancer cells. CNTs convert absorbed near-infrared (NIR) light to heat, which can thermally ablate cells that have bound the CNTs. We have previously demonstrated that monoclonal antibodies (MAbs) noncovalently coupled to CNTs can specifically target and kill cells in vitro. Here, we describe the preparation of conjugates in which the MAbs are covalently conjugated to the CNTs. The specificity of both the binding and NIR-mediated killing of the tumor cells by the MAb-CNTs is demonstrated by using CD22+CD25- Daudi cells, CD22-CD25+ phytohemagglutinin-activated normal human peripheral blood mononuclear cells, and CNTs covalently modified with either anti-CD22 or anti-CD25. We further demonstrate that the stability and specificity of the MAb-CNT conjugates are preserved following incubation in either sodium dodecyl sulfate or mouse serum, indicating that they should be stable for in vivo use.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Imunoconjugados/uso terapêutico , Linfoma de Células B/terapia , Nanotubos de Carbono , Anticorpos Monoclonais/imunologia , Linhagem Celular Tumoral , Temperatura Alta , Humanos , Imunoconjugados/imunologia , Raios Infravermelhos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos da radiação , Linfoma de Células B/imunologia , Fito-Hemaglutininas/metabolismo , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Células Tumorais Cultivadas
4.
Stem Cell Reports ; 12(5): 1129-1144, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31056477

RESUMO

During mammalian embryogenesis, changes in morphology and gene expression are concurrent with epigenomic reprogramming. Using human embryonic stem cells representing the preimplantation blastocyst (naive) and postimplantation epiblast (primed), our data in 2iL/I/F naive cells demonstrate that a substantial portion of known human enhancers are premarked by H3K4me1, providing an enhanced open chromatin state in naive pluripotency. The 2iL/I/F enhancer repertoire occupies 9% of the genome, three times that of primed cells, and can exist in broad chromatin domains over 50 kb. Enhancer chromatin states are largely poised. Seventy-seven percent of 2iL/I/F enhancers are decommissioned in a stepwise manner as cells become primed. While primed topologically associating domains are largely unaltered upon differentiation, naive 2iL/I/F domains expand across primed boundaries, affecting three-dimensional genome architecture. Differential topologically associating domain edges coincide with 2iL/I/F H3K4me1 enrichment. Our results suggest that naive-derived 2iL/I/F cells have a unique chromatin landscape, which may reflect early embryogenesis.


Assuntos
Blastocisto/metabolismo , Cromatina/genética , Elementos Facilitadores Genéticos/genética , Camadas Germinativas/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Animais , Blastocisto/citologia , Diferenciação Celular/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/citologia , Células-Tronco Embrionárias Humanas/citologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA