Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pest Manag Sci ; 74(12): 2835-2841, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29756384

RESUMO

BACKGROUND: Tetranychus evansi (Te) is an exotic pest of solanaceous crops in Africa. The predatory mite Phytoseiulus longipes (Pl) and the fungus Metarhizium anisopliae (Ma) are potential biocontrol agents of Te. The present study investigated the efficacy of fungus-treated foam placed above or below the third Te-infested tomato leaf. The persistence of fungus-treated foam and the performance of Pl with and without fungus-treated foam were evaluated. RESULTS: The fungus-treated foam was effective when Te infestation was below the third tomato leaf as no damage was recorded on any of the upper tomato leaves up to 30 days post-treatment. However, in the control treatments, the infestation increased considerably from 9 ± 0.3% to 100 ± 0% (mean ± standard error) at 15 days post-treatment. The reuse of the fungus-treated foam at 15, 30 and 45 days post-treatment resulted in 19 ± 1.4%, 25 ± 1.2% and 54 ± 2.1%, respectively, infestation by Te. The fungus-treated foam and Pl alone were efficient, but there was no benefit to combining them for use against Te. CONCLUSION: The fungus-treated foam is an effective method to optimise the use of Ma in screenhouse conditions. These two control agents could be integrated in an integrated pest management strategy for crop protection. However, these results need to be confirmed in large field trials. © 2018 Society of Chemical Industry.


Assuntos
Ácaros e Carrapatos/fisiologia , Metarhizium/fisiologia , Tetranychidae/microbiologia , Animais , Bioensaio , Solanum lycopersicum/microbiologia , Solanum lycopersicum/parasitologia , Folhas de Planta/microbiologia , Folhas de Planta/parasitologia , Comportamento Predatório , Tetranychidae/fisiologia
2.
PLoS One ; 9(4): e95071, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24743580

RESUMO

Studying distribution is necessary to understand and manage the dynamics of species with spatially structured populations. Here we studied the distribution in Tetranychus evansi and T. urticae, two mite pests of tomato, in the scope of evaluating factors that can influence the effectiveness of Integrated Pest Management strategies. We found greater positive density-dependent distribution with T. evansi than T. urticae when assayed on single, detached tomato leaves. Indeed, T. evansi distribution among leaflets increased with initial population density while it was high even at low T. urticae densities. Intensity and rate of damage to whole plants was higher with T. evansi than T. urticae. We further studied the circadian migration of T. evansi within plant. When T. evansi density was high the distribution behavior peaked between 8 am and 3 pm and between 8 pm and 3 am local time of Kenya. Over 24 h the total number of mites ascending and descending was always similar and close to the total population size. The gregarious behavior of T. evansi combined with its rapid population growth rate, may explain why few tomato plants can be severely damaged by T. evansi and how suddenly all the crop can be highly infested. However the localisation and elimination of the first infested plants damaged by T. evansi could reduce the risk of outbreaks in the entire crop. These findings suggest also that an acaricide treated net placed on the first infested plants could be very effective to control T. evansi. Moreover circadian migration would therefore accentuate the efficiency of an acaricide treated net covering the infested plants.


Assuntos
Comportamento Animal/fisiologia , Ritmo Circadiano/fisiologia , Controle de Pragas , Solanum lycopersicum/parasitologia , Tetranychidae/fisiologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA