Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(18)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39336182

RESUMO

The mechanical behavior of unreinforced masonry (URM) shear walls under in-plane cyclic loading is crucial for assessing their seismic performance. Although masonry structures have been extensively studied, the specific influence of varying lime content in cement-lime mortars on the cyclic behavior of URM walls has not been adequately explored. This study addresses this gap by experimentally evaluating the effects of three mortar mixes with increasing lime content, 1:0:5, 1:1:6, and 1:2:9 (cement:lime:sand, by volume), on the cyclic performance of brick URM walls. Nine single-leaf wall specimens 900 mm × 900 mm were constructed and subjected to combined vertical compression and horizontal cyclic loading. Key parameters such as drift capacity, stiffness degradation, and energy dissipation were measured. The results indicated that the inclusion of lime leads to a moderate improvement in drift capacity and ductility of the walls, with the 1:1:6 mix showing the highest lateral capacity (0.55 MPa), drift at cracking (0.08%), and drift at peak capacity (0.31%). Stiffness degradation and energy dissipation were found to be comparable across all mortar types. These findings suggest that partial substitution of cement with lime can enhance certain aspects of masonry performance. Further research is recommended to optimize mortar compositions for unreinforced masonry applications.

2.
Materials (Basel) ; 15(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269046

RESUMO

In this paper, the focus is placed on essential aspects of finite element modelling of thermo-mechanical behaviour of massive foundation slabs at early ages. Basic decision-making issues are discussed in this work: the potential need to explicitly consider the casting process in the modelling, the necessary size of the underlying soil to be modelled and the size of the FE mesh, and the need of considering daily changes of the environmental temperature and the temperature distribution over the depth of the soil. Next, the contribution of shrinkage to early age stresses, the role of the reinforcement, and the type of mechanical model are investigated. Comparative analyses aiming to investigate the most important aspects of the FE model and some possible simplifications with negligible effect on the results are made on the example of a massive foundation slab. Finally, the results are summarized with recommendations for creating the FE models of massive slabs at early ages.

3.
RSC Adv ; 11(40): 24613-24623, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35481055

RESUMO

The development of sensors for pH monitoring is of extreme importance in the monitoring of concrete and reinforced concrete structures. Imidazole derivatives are promising probes for pH sensing due to the amphoteric nature of their heterocyclic ring, which can be protonated/deprotonated upon pH changes. In this work, a triarylimidazole was synthesised and used as a dopant in an organic-inorganic hybrid (OIH) sol-gel matrix to obtain a pH-sensitive membrane for further application in optical fibre sensors (OFS). The triarylimidazole probe shows fluorimetric response in pH between 9 and 13, which is the desired range for monitoring carbonation of concrete. This degradation process lowers the highly alkaline pH of concrete (12.5-13) to values below 9, which creates favourable conditions for corrosion of concrete reinforcement. The OIH membranes used were based on Jeffamine THF170 and 3-glycidoxypropytrimethoxysilane precursors, which had already been shown to be suitable and resistant in contact with cement-based materials. The OIHs were doped with three different contents of the triarylimidazole and the structural, dielectric, thermal and optical properties of the pure and doped OIH materials were evaluated. The structural analysis showed that the presence of the triarylimidazole did not change the structural properties of the OIH material. Electrochemical impedance spectroscopy showed that in the doped samples the conductivity increased with the imidazole concentration. The ε r obtained for the doped samples ranged approximately from 11 to 19 and for the pure matrices was 8. Thermal analysis showed that these materials are stable up to 350 °C and that the presence of the probe did not change that feature. The optical properties showed that the prepared OIH materials have promising properties to be used as pH sensitive fluorimetric probes.

4.
Polymers (Basel) ; 12(2)2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046023

RESUMO

Nowadays, concrete degradation is a major problem in the civil engineering field. Concrete carbonation, one of the main sources of structures' degradation, causes concrete's pH to decrease; hence, enabling the necessary conditions for corrosion reinforcement. An accurate, non-destructive sensor able to monitor the pH decrease resistant to concrete conditions is envisaged by many researchers. Optical fibre sensors (OFS) are generally used for concrete applications due to their high sensitivity and resistance to external interferences. Organic-inorganic hybrid (OIH) films, for potential functionalization of OFS to be applied in concrete structures, were developed. Polydimethylsiloxane (PDMS) based sol-gel materials were synthesized by the formation of an amino alcohol precursor followed by hydrolysis and condensation. Different ratios between PDMS and (3-aminopropyl)triethoxysilane (3-APTES) were studied. The synthesized OIH films were characterized by Fourier-transformed infrared spectroscopy (FTIR), UV-Vis spectroscopy, electrochemical impedance spectroscopy (EIS) and thermogravimetric analysis (TGA). The OIH films were doped with phenolphthalein (Phph), a pH indicator, and were characterized by UV-Vis and EIS. FTIR characterization showed that the reaction between both precursors, the hydrolysis and the condensation reactions occurred successfully. UV-Vis characterization confirmed the presence of Phph embedded in the OIH matrices. Dielectric and thermal properties of the materials showed promising properties for application in contact with a high alkaline environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA