Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Parasit Vectors ; 13(1): 44, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32000835

RESUMO

BACKGROUND: Leishmania spp. are digenetic parasites capable of infecting humans and causing a range of diseases collectively known as leishmaniasis. The main mechanisms involved in the development and permanence of this pathology are linked to evasion of the immune response. Crosstalk between the immune system and particularities of each pathogenic species is associated with diverse disease manifestations. Lipophosphoglycan (LPG), one of the most important molecules present on the surface of Leishmania parasites, is divided into four regions with high molecular variability. Although LPG plays an important role in host-pathogen and vector-parasite interactions, the distribution and phylogenetic relatedness of the genes responsible for its synthesis remain poorly explored. The recent availability of full genomes and transcriptomes of Leishmania parasites offers an opportunity to leverage insight on how LPG-related genes are distributed and expressed by these pathogens. RESULTS: Using a phylogenomics-based framework, we identified a catalog of genes involved in LPG biosynthesis across 22 species of Leishmania from the subgenera Viannia and Leishmania, as well as 5 non-Leishmania trypanosomatids. The evolutionary relationships of these genes across species were also evaluated. Nine genes related to the production of the glycosylphosphatidylinositol (GPI)-anchor were highly conserved among compared species, whereas 22 genes related to the synthesis of the repeat unit presented variable conservation. Extensive gain/loss events were verified, particularly in genes SCG1-4 and SCA1-2. These genes act, respectively, on the synthesis of the side chain attached to phosphoglycans and in the transfer of arabinose residues. Phylogenetic analyses disclosed evolutionary patterns reflective of differences in host specialization, geographic origin and disease manifestation. CONCLUSIONS: The multiple gene gain/loss events identified by genomic data mining help to explain some of the observed intra- and interspecies variation in LPG structure. Collectively, our results provide a comprehensive catalog that details how LPG-related genes evolved in the Leishmania parasite specialization process.


Assuntos
Genoma de Protozoário , Glicoesfingolipídeos/biossíntese , Glicoesfingolipídeos/genética , Leishmania/fisiologia , Trypanosomatina/genética , Sequência de Bases , Evolução Biológica , Mineração de Dados , Glicoesfingolipídeos/química , Humanos , Leishmania/classificação , Leishmania/genética , Funções Verossimilhança , Filogenia , RNA de Protozoário/química , Trypanosomatina/classificação , Trypanosomatina/fisiologia
2.
Front Genet ; 10: 1056, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781157

RESUMO

Human T-lymphotropic virus 1 (HTLV-1) was the first recognized human retrovirus. Infection can lead to two main symptomatologies: adult T-cell lymphoma/leukemia (ATLL) and HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). Each manifestation is associated with distinct characteristics, as ATLL presents as a leukemia-like disease, while HAM/TSP presents as severe inflammation in the central nervous system, leading to paraparesis. Previous studies have identified molecules associated with disease development, e.g., the downregulation of Foxp3 in Treg cells was associated with increased risk of HAM/TSP. In addition, elevated levels of CXCL10, CXCL9, and Neopterin in cerebrospinal fluid also present increased risk. However, these molecules were only associated with specific patient groups or viral strains. Furthermore, the majority of studies did not jointly compare all clinical manifestations, and robust analysis entails the inclusion of both ATLL and HAM/TSP. The low numbers of samples also pose difficulties in conducting gene expression analysis to identify specific molecular relationships. To address these limitations and increase the power of manifestation-specific gene associations, meta-analysis was performed using publicly available gene expression data. The application of supervised learning techniques identified alterations in two genes observed to act in tandem as potential biomarkers: GBP2 was associated with HAM/TSP, and CD40LG with ATLL. Together, both molecules demonstrated high sample-classification accuracy (AUC values: 0.88 and 1.0, respectively). Next, other genes with expression correlated to these genes were identified, and we attempted to relate the enriched pathways identified with the characteristic of each clinical manifestation. The present findings contribute to knowledge surrounding viral progression and suggest a potentially powerful new tool for the molecular classification of HTLV-associated diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA