Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanoscale Res Lett ; 9(1): 95, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24568668

RESUMO

We report the seed/catalyst-free vertical growth of high-density electrodeposited ZnO nanostructures on a single-layer graphene. The absence of hexamethylenetetramine (HMTA) and heat has resulted in the formation of nanoflake-like ZnO structure. The results show that HMTA and heat are needed to promote the formation of hexagonal ZnO nanostructures. The applied current density plays important role in inducing the growth of ZnO on graphene as well as in controlling the shape, size, and density of ZnO nanostructures. High density of vertically aligned ZnO nanorods comparable to other methods was obtained. The quality of the ZnO nanostructures also depended strongly on the applied current density. The growth mechanism was proposed. According to the growth timing chart, the growth seems to involve two stages which are the formation of ZnO nucleation and the enhancement of the vertical growth of nanorods. ZnO/graphene hybrid structure provides several potential applications in electronics and optoelectronics such as photovoltaic devices, sensing devices, optical devices, and photodetectors.

2.
Nanoscale Res Lett ; 9(1): 337, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25024694

RESUMO

A seedless growth of zinc oxide (ZnO) structures on multilayer (ML) graphene by electrochemical deposition without any pre-deposited ZnO seed layer or metal catalyst was studied. A high density of a mixture of vertically aligned/non-aligned ZnO rods and flower-shaped structures was obtained. ML graphene seems to generate the formation of flower-shaped structures due to the stacking boundaries. The nucleation of ZnO seems to be promoted at the stacking edges of ML graphene with the increase of applied current density, resulting in the formation of flower-shaped structures. The diameters of the rods/flower-shaped structures also increase with the applied current density. ZnO rods/flower-shaped structures with high aspect ratio over 5.0 and good crystallinity were obtained at the applied current densities of -0.5 and -1.0 mA/cm(2). The growth mechanism was proposed. The growth involves the formation of ZnO nucleation below 80°C and the enhancement of the growth of vertically non-aligned rods and flower-shaped structures at 80°C. Such ZnO/graphene hybrid structure provides several potential applications in sensing devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA