Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-32253218

RESUMO

Multidrug-resistant strains belonging to the Enterobacter cloacae complex (ECC) group, and especially those belonging to clusters C-III, C-IV, and C-VIII, have increasingly emerged as a leading cause of health care-associated infections, with colistin used as one of the last lines of treatment. However, colistin-resistant ECC strains have emerged. The aim of this study was to prove that MgrB, the negative regulator of the PhoP/PhoQ two-component regulatory system, is involved in colistin resistance in ECC of cluster C-VIII, formerly referred to as Enterobacter hormaechei subsp. steigerwaltii An in vitro mutant (Eh22-Mut) was selected from a clinical isolate of Eh22. The sequencing analysis of its mgrB gene showed the presence of one nucleotide deletion leading to the formation of a truncated protein of six instead of 47 amino acids. The wild-type mgrB gene from Eh22 and that of a clinical strain of Klebsiella pneumoniae used as controls were cloned, and the corresponding recombinant plasmids were used for complementation assays. The results showed a fully restored susceptibility to colistin and confirmed for the first time that mgrB gene expression plays a key role in acquired resistance to colistin in ECC strains.


Assuntos
Colistina , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Enterobacter , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana
2.
J Hepatol ; 68(3): 441-448, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29113909

RESUMO

BACKGROUND & AIMS: Hepatitis B virus (HBV) has a DNA genome but replicates within the nucleus by reverse transcription of an RNA pregenome, which is converted to DNA in cytoplasmic capsids. Capsids in this compartment are correlated with inflammation and epitopes of the capsid protein core (Cp) are a major target for T cell-mediated immune responses. We investigated the mechanism of cytoplasmic capsid transport, which is important for infection but also for cytosolic capsid removal. METHODS: We used virion-derived capsids containing mature rcDNA (matC) and empty capsids (empC). RNA-containing capsids (rnaC) were used as a control. The investigations comprised pull-down assays for identification of cellular interaction partners, immune fluorescence microscopy for their colocalization and electron microscopy after microinjection to determine their biological significance. RESULTS: matC and empC underwent active transport through the cytoplasm towards the nucleus, while rnaC was poorly transported. We identified the dynein light chain LL1 as a functional interaction partner linking capsids to the dynein motor complex and showed that there is no compensatory transport pathway. Using capsid and dynein LL1 mutants we characterized the required domains on the capsid and LL1. CONCLUSIONS: This is the first investigation on the detailed molecular mechanism of how matC pass the cytoplasm upon infection and how empC can be actively removed from the cytoplasm into the nucleus. Considering that hepatocytes with cytoplasmic capsids are better recognized by the T cells, we hypothesize that targeting capsid DynLL1-interaction will not only block HBV infection but also stimulate elimination of infected cells. LAY SUMMARY: In this study, we identified the molecular details of HBV translocation through the cytoplasm. Our evidence offers a new drug target which could not only inhibit infection but also stimulate immune clearance of HBV infected cells.


Assuntos
Proteínas do Capsídeo/metabolismo , DNA Viral , Vírus da Hepatite B , Hepatite B , Replicação Viral/fisiologia , Transporte Biológico/imunologia , Hepatite B/imunologia , Hepatite B/virologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Humanos , Imunidade Celular/imunologia , Microscopia Eletrônica/métodos , Microscopia de Fluorescência/métodos , Chaperonas Moleculares , Ligação Proteica , Vírion/imunologia
3.
J Virol ; 89(3): 1719-30, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25410864

RESUMO

UNLABELLED: In this study, we characterized the molecular basis for binding of adenovirus (AdV) to the cytoplasmic face of the nuclear pore complex (NPC), a key step during delivery of the viral genome into the nucleus. We used RNA interference (RNAi) to deplete cells of either Nup214 or Nup358, the two major Phe-Gly (FG) repeat nucleoporins localized on the cytoplasmic side of the NPC, and evaluated the impact on hexon binding and AdV infection. The accumulation of purified hexon trimers or partially disassembled AdV at the nuclear envelope (NE) was observed in digitonin-permeabilized cells in the absence of cytosolic factors. Both in vitro hexon binding and in vivo nuclear import of the AdV genome were strongly reduced in Nup214-depleted cells but still occurred in Nup358-depleted cells, suggesting that Nup214 is a major binding site of AdV during infection. The expression of an NPC-targeted N-terminal domain of Nup214 in Nup214-depleted cells restored the binding of hexon at the NE and the nuclear import of protein VII (pVII), indicating that this region is sufficient to allow AdV binding. We further narrowed the binding site to a 137-amino-acid segment in the N-terminal domain of Nup214. Together, our results have identified a specific region within the N terminus of Nup214 that acts as a direct NPC binding site for AdV. IMPORTANCE: AdVs, which have the largest genome of nonenveloped DNA viruses, are being extensively explored for use in gene therapy, especially in alternative treatments for cancers that are refractory to traditional therapies. In this study, we characterized the molecular basis for binding of AdV to the cytoplasmic face of the NPC, a key step for delivery of the viral genome into the nucleus. Our data indicate that a 137-amino-acid region of the nucleoporin Nup214 is a binding site for the major AdV capsid protein, hexon, and that this interaction is required for viral DNA import. These findings provide additional insight on how AdV exploits the nuclear transport machinery for infection. The results could promote the development of new strategies for gene transfer and enhance understanding of the nuclear import of other viral DNA genomes, such as those of papillomavirus or hepatitis B virus that induce specific cancers.


Assuntos
Transporte Ativo do Núcleo Celular , Adenoviridae/fisiologia , Proteínas do Capsídeo/metabolismo , DNA Viral/metabolismo , Interações Hospedeiro-Patógeno , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Replicação Viral , Animais , Linhagem Celular , Técnicas de Silenciamento de Genes , Humanos , Ligação Proteica , Mapeamento de Interação de Proteínas , Interferência de RNA
4.
J Gen Virol ; 96(Pt 1): 183-195, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25274856

RESUMO

Biopsies from patients show that hepadnaviral core proteins and capsids - collectively called core - are found in the nucleus and cytoplasm of infected hepatocytes. In the majority of studies, cytoplasmic core localization is related to low viraemia while nuclear core localization is associated with high viral loads. In order to better understand the molecular interactions leading to core localization, we analysed transfected hepatoma cells using immune fluorescence microscopy. We observed that expression of core protein in the absence of other viral proteins led to nuclear localization of core protein and capsids, while expression of core in the context of the other viral proteins resulted in a predominantly cytoplasmic localization. Analysis of which viral partner was responsible for cytoplasmic retention indicated that the HBx, surface proteins and HBeAg had no impact but that the viral polymerase was the major determinant. Further analysis revealed that ϵ, an RNA structure to which the viral polymerase binds, was essential for cytoplasmic retention. Furthermore, we showed that core protein phosphorylation at Ser 164 was essential for the cytoplasmic core localization phenotype, which is likely to explain differences observed between individual cells.


Assuntos
Proteínas do Capsídeo/metabolismo , DNA Polimerase Dirigida por DNA/genética , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Fosforilação/genética , Proteínas do Core Viral/metabolismo , Proteínas do Capsídeo/genética , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Células Hep G2 , Antígenos E da Hepatite B/genética , Antígenos E da Hepatite B/metabolismo , Humanos , Transfecção/métodos , Proteínas do Core Viral/genética
5.
Nucleic Acids Res ; 38(20): 7112-21, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20615898

RESUMO

Most plant mitochondria messenger RNAs (mRNAs) undergo editing through C-to-U conversions located mainly in exon sequences. However, some RNA editing events are found in non-coding regions at critical positions in the predicted secondary and tertiary structures of introns, suggesting that RNA editing could be important for splicing. Here, we studied the relationships between editing and splicing of the mRNA encoding the ribosomal protein S10 (rps10), which has a group II intron and five editing sites. Two of them, C2 and C3, predicted to stabilize the folded structure of the intron necessary for splicing, were studied by using rps10 mutants introduced into isolated potato mitochondria by electroporation. While mutations of C2 involved in EBS2/IBS2 interactions did not affect splicing, probably by the presence of an alternative EBS2' region in domain I of the intron, the edition of site C3 turned out to be critical for rps10 mRNA splicing; only the edited (U) form of the transcript was processed. Interestingly, RNA editing was strongly reduced in transcripts from two different intronless genes, rps10 from potato and cox2 from wheat, suggesting that efficient RNA processing may require a close interaction of factors engaged in different maturation processes. This is the first report linking editing and splicing in conditions close to the in vivo situation.


Assuntos
Regulação da Expressão Gênica de Plantas , Íntrons , Edição de RNA , Splicing de RNA , RNA/metabolismo , Mitocôndrias/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA/química , Precursores de RNA/química , Precursores de RNA/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA Mitocondrial , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Solanum tuberosum/genética
6.
Antibiotics (Basel) ; 11(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36289987

RESUMO

During a two-month period (2017-2018), 336 urine samples positive for Escherichia coli were collected from Tunisian patients. Of the 336 samples, 266 were collected from community patients and 70 from hospital settings. In all, 15 ESBL producers were identified (8 and 7, respectively) and assigned to 13 pulsotypes, including four ESBL-producing E. coli (ESBL-E) with E1 and E2 profiles (2 isolates each) from community patients. The two strains E1 were identified as B2-ST131 subclade C2 and the two isolates E2, A-ST617. The four strains carrying both CTX-M-15 and CTX-M-27, exhibited the multireplicon IncFII/F1A/F1B with the same formula F31:A4:B1. Two isolates with patterns E3 and E4 (Dice coefficient, 78.7%) isolated from community and hospital settings of two geographic areas were assigned to the emerging ST131 C1-M27 subclade and contained the replicon F1:A-:B20. The remaining ESBL-E divided into different sequence types/associated CTX-M: 2 ST131-C2/CTX-M-15 and ST744/CTX-M-55, ST617/CTM-15, ST2973/CTX-M-55, ST6448/CTX-M-15, ST224/CTX-M-15, ST1431/CTX-M-15, and ST38/CTX-M-27, one isolate each. Our study reports for the first time the presence in the Tunisian community of two clones of E. coli, including the virulent clone ST131-C2 harboring both CTX-M-15 and CTX-M-27, and confirms the spread of the emergent clone ST131-C1-M-27, notably in community urinary tract infections.

7.
Curr Genet ; 57(5): 317-25, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21701904

RESUMO

In the leptosporangiate fern Osmunda regalis, cox1 gene is disrupted by a 1071-nucleotide-long group I intron that is homologous to the Marchantia polymorpha cox1 intron 4 (cox1i395g1). This intron, which shares 89% sequence identity with its bryophyte counterpart, lost the capacity to encode for a maturase due to insertion/deletion mutations. The cox1 coding region is interrupted by a stop codon in both exons. The cox1 transcript undergoes 58 C-to-U and 13 U-to-C conversions, including the suppression of two stop codons that result in the recovery of a functional cox1 ORF. Interestingly, 4 C-to-U conversions found in mRNA precursors showed that the O. regalis cox1i395g1 intron is efficiently edited. These modifications improved the sequence identity with the Marchantia cox1i395 intron. In particular, the RNA editing events affect regions involved in secondary and tertiary structures of the intron, restoring three base pairing in the structural P5a and P9 helices, and correcting a highly conserved U in the P7 helix that contributes to the catalytic core. Moreover, cox1 intron orthologous from three different fern species were found to be edited by both C-to-U and U-to-C conversions in P7 and P9. Thus, RNA editing helps to correct the conserved domains of group I introns in "true ferns", suggesting a possible link between editing and splicing. We present here the first experimental evidence of RNA editing concerning a group I intron in plant organelles.


Assuntos
Gleiquênias/genética , Íntrons , Mitocôndrias/genética , Edição de RNA , Sequência de Bases , Sequência Conservada , Ciclo-Oxigenase 1/genética , Citidina/genética , Dryopteris/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Polypodium/genética , Dobramento de RNA , Uridina/genética
8.
Curr Genet ; 55(1): 69-79, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19112563

RESUMO

We studied the genomic structure and RNA editing of mitochondrial cox1, cox2, cob and atp9 from the horsetail Equisetum arvense, a representative of an old fern lineage. Editing of cox1, cob and atp9 mRNAs occur only by C-to-U transitions. No changes were found in cox2 transcripts constituting one of the rare examples of unedited mitochondrial mRNA in land plants. From three intervening sequences in cox1, cox1i395 and cox1i624 are group IB introns homologous to the Marchantia polymorpha cox1 introns, and cox1i747 is a group IIA intron different to other introns found in plant mtDNA. The group II intron cox2i373 is very similar to other introns found in cox2 from vascular plants. While cob and atp9 have no introns and display the gene structure found in seed plants, various nucleotide substitutions abolish the only potential ORF, a LAGLIDADG endonuclease present in cox1i395. Thus, E. arvense mitochondria conserve two group I introns from non-vascular plants, probably inherited from a common ancestor with liverworts. Analogous to seed plants, E. arvense has no potential mitochondrial splicing factors encoded in these introns. This is the first report concerning the presence of vertically inherited group I introns in vascular plant mitochondria.


Assuntos
Equisetum/genética , Íntrons/genética , Marchantia/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Fases de Leitura Aberta/fisiologia , Edição de RNA/genética , Sequência de Bases , Clonagem Molecular , DNA de Plantas/química , DNA de Plantas/genética , DNA de Plantas/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Reação em Cadeia da Polimerase , Splicing de RNA , RNA de Plantas/química , RNA de Plantas/genética , RNA de Plantas/metabolismo , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA