Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Glob Chang Biol ; 30(6): e17356, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38853470

RESUMO

Seasonally abundant arthropods are a crucial food source for many migratory birds that breed in the Arctic. In cold environments, the growth and emergence of arthropods are particularly tied to temperature. Thus, the phenology of arthropods is anticipated to undergo a rapid change in response to a warming climate, potentially leading to a trophic mismatch between migratory insectivorous birds and their prey. Using data from 19 sites spanning a wide temperature gradient from the Subarctic to the High Arctic, we investigated the effects of temperature on the phenology and biomass of arthropods available to shorebirds during their short breeding season at high latitudes. We hypothesized that prolonged exposure to warmer summer temperatures would generate earlier peaks in arthropod biomass, as well as higher peak and seasonal biomass. Across the temperature gradient encompassed by our study sites (>10°C in average summer temperatures), we found a 3-day shift in average peak date for every increment of 80 cumulative thawing degree-days. Interestingly, we found a linear relationship between temperature and arthropod biomass only below temperature thresholds. Higher temperatures were associated with higher peak and seasonal biomass below 106 and 177 cumulative thawing degree-days, respectively, between June 5 and July 15. Beyond these thresholds, no relationship was observed between temperature and arthropod biomass. Our results suggest that prolonged exposure to elevated temperatures can positively influence prey availability for some arctic birds. This positive effect could, in part, stem from changes in arthropod assemblages and may reduce the risk of trophic mismatch.


Assuntos
Artrópodes , Biomassa , Estações do Ano , Temperatura , Animais , Regiões Árticas , Artrópodes/fisiologia , Mudança Climática , Cadeia Alimentar , Charadriiformes/fisiologia , Migração Animal
2.
Glob Chang Biol ; 30(5): e17335, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38771086

RESUMO

Global climate change has altered the timing of seasonal events (i.e., phenology) for a diverse range of biota. Within and among species, however, the degree to which alterations in phenology match climate variability differ substantially. To better understand factors driving these differences, we evaluated variation in timing of nesting of eight Arctic-breeding shorebird species at 18 sites over a 23-year period. We used the Normalized Difference Vegetation Index as a proxy to determine the start of spring (SOS) growing season and quantified relationships between SOS and nest initiation dates as a measure of phenological responsiveness. Among species, we tested four life history traits (migration distance, seasonal timing of breeding, female body mass, expected female reproductive effort) as species-level predictors of responsiveness. For one species (Semipalmated Sandpiper), we also evaluated whether responsiveness varied across sites. Although no species in our study completely tracked annual variation in SOS, phenological responses were strongest for Western Sandpipers, Pectoral Sandpipers, and Red Phalaropes. Migration distance was the strongest additional predictor of responsiveness, with longer-distance migrant species generally tracking variation in SOS more closely than species that migrate shorter distances. Semipalmated Sandpipers are a widely distributed species, but adjustments in timing of nesting relative to variability in SOS did not vary across sites, suggesting that different breeding populations of this species were equally responsive to climate cues despite differing migration strategies. Our results unexpectedly show that long-distance migrants are more sensitive to local environmental conditions, which may help them to adapt to ongoing changes in climate.


Assuntos
Migração Animal , Mudança Climática , Comportamento de Nidação , Estações do Ano , Animais , Regiões Árticas , Migração Animal/fisiologia , Feminino , Charadriiformes/fisiologia , Reprodução
3.
Proc Biol Sci ; 290(2004): 20231154, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37554032

RESUMO

The strength of indirect biotic interactions is difficult to quantify in the wild and can alter community composition. To investigate whether the presence of a prey species affects the population growth rate of another prey species, we quantified predator-mediated interaction strength using a multi-prey mechanistic model of predation and a population matrix model. Models were parametrized using behavioural, demographic and experimental data from a vertebrate community that includes the arctic fox (Vulpes lagopus), a predator feeding on lemmings and eggs of various species such as sandpipers and geese. We show that the positive effects of the goose colony on sandpiper nesting success (due to reduction of search time for sandpiper nests) were outweighed by the negative effect of an increase in fox density. The fox numerical response was driven by changes in home range size. As a result, the net interaction from the presence of geese was negative and could lead to local exclusion of sandpipers. Our study provides a rare empirically based model that integrates mechanistic multi-species functional responses and behavioural processes underlying the predator numerical response. This is an important step forward in our ability to quantify the consequences of predation for community structure and dynamics.


Assuntos
Charadriiformes , Comportamento de Retorno ao Território Vital , Animais , Raposas/fisiologia , Dinâmica Populacional , Gansos/fisiologia , Crescimento Demográfico , Comportamento Predatório/fisiologia , Arvicolinae/fisiologia , Cadeia Alimentar
4.
J Anim Ecol ; 92(12): 2373-2385, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37814584

RESUMO

Indirect interactions are widespread among prey species that share a common predator, but the underlying mechanisms driving these interactions are often unclear, and our ability to predict their outcome is limited. Changes in behavioural traits that impact predator space use could be a key proximal mechanism mediating indirect interactions, but there is little empirical evidence of the causes and consequences of such behavioural-numerical response in multispecies systems. Here, we investigate the complex ecological relationships between seven prey species sharing a common predator. We used a path analysis approach on a comprehensive 9-year data set simultaneously tracking predator space use, prey densities and prey mortality rate on key species of a simplified Arctic food web. We show that high availability of a clumped and spatially predictable prey (goose eggs) leads to a twofold reduction in predator (arctic fox) home range size, which increases local predator density and strongly decreases nest survival of an incidental prey (American golden plover). On the contrary, a scattered cyclic prey with potentially lower spatial predictability (lemming) had a weaker effect on fox space use and an overall positive impact on the survival of incidental prey. These contrasting effects underline the importance of studying behavioural responses of predators in multiprey systems and to explicitly integrate behavioural-numerical responses in multispecies predator-prey models.


Assuntos
Comportamento de Retorno ao Território Vital , Comportamento Predatório , Animais , Comportamento Predatório/fisiologia , Cadeia Alimentar , Gansos/fisiologia , Raposas/fisiologia
5.
Ecotoxicology ; 32(8): 1062-1083, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37874523

RESUMO

Mercury (Hg) pollution remains a concern to Arctic ecosystems, due to long-range transport from southern industrial regions and melting permafrost and glaciers. The objective of this study was to identify intrinsic, extrinsic, and temporal factors influencing Hg concentrations in Arctic-breeding shorebirds and highlight regions and species at greatest risk of Hg exposure. We analyzed 1094 blood and 1384 feather samples from 12 shorebird species breeding at nine sites across the North American Arctic during 2012 and 2013. Blood Hg concentrations, which reflect Hg exposure in the local area in individual shorebirds: 1) ranged from 0.01-3.52 µg/g ww, with an overall mean of 0.30 ± 0.27 µg/g ww; 2) were influenced by species and study site, but not sampling year, with birds sampled near Utqiagvik, AK, having the highest concentrations; and 3) were influenced by foraging habitat at some sites. Feather Hg concentrations, which reflected Hg exposure from the wintering grounds: 1) ranged from 0.07-12.14 µg/g fw in individuals, with an overall mean of 1.14 ± 1.18 µg/g fw; and 2) were influenced by species and year. Most Arctic-breeding shorebirds had blood and feather Hg concentrations at levels where no adverse effects of exposure were predicted, though some individuals sampled near Utqiagvik had Hg levels that would be considered of concern. Overall, these data increase our understanding of how Hg is distributed in the various shorebird breeding areas of the Arctic, what factors predispose Arctic-breeding shorebirds to Hg exposure, and lay the foundation for future monitoring efforts.


Assuntos
Monitoramento Ambiental , Mercúrio , Humanos , Animais , Ecossistema , Aves , Mercúrio/análise , Cruzamento
6.
Nature ; 540(7631): 109-113, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27880762

RESUMO

The behavioural rhythms of organisms are thought to be under strong selection, influenced by the rhythmicity of the environment. Such behavioural rhythms are well studied in isolated individuals under laboratory conditions, but free-living individuals have to temporally synchronize their activities with those of others, including potential mates, competitors, prey and predators. Individuals can temporally segregate their daily activities (for example, prey avoiding predators, subordinates avoiding dominants) or synchronize their activities (for example, group foraging, communal defence, pairs reproducing or caring for offspring). The behavioural rhythms that emerge from such social synchronization and the underlying evolutionary and ecological drivers that shape them remain poorly understood. Here we investigate these rhythms in the context of biparental care, a particularly sensitive phase of social synchronization where pair members potentially compromise their individual rhythms. Using data from 729 nests of 91 populations of 32 biparentally incubating shorebird species, where parents synchronize to achieve continuous coverage of developing eggs, we report remarkable within- and between-species diversity in incubation rhythms. Between species, the median length of one parent's incubation bout varied from 1-19 h, whereas period length-the time in which a parent's probability to incubate cycles once between its highest and lowest value-varied from 6-43 h. The length of incubation bouts was unrelated to variables reflecting energetic demands, but species relying on crypsis (the ability to avoid detection by other animals) had longer incubation bouts than those that are readily visible or who actively protect their nest against predators. Rhythms entrainable to the 24-h light-dark cycle were less prevalent at high latitudes and absent in 18 species. Our results indicate that even under similar environmental conditions and despite 24-h environmental cues, social synchronization can generate far more diverse behavioural rhythms than expected from studies of individuals in captivity. The risk of predation, not the risk of starvation, may be a key factor underlying the diversity in these rhythms.


Assuntos
Charadriiformes/fisiologia , Comportamento de Nidação/fisiologia , Periodicidade , Comportamento Predatório , Animais , Evolução Biológica , Charadriiformes/classificação , Ritmo Circadiano , Sinais (Psicologia) , Meio Ambiente , Comportamento Alimentar , Feminino , Masculino , Fotoperíodo , Reprodução , Especificidade da Espécie , Inanição/veterinária , Fatores de Tempo , Zigoto/crescimento & desenvolvimento
7.
Biol Conserv ; 255: 108968, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33518770

RESUMO

Overabundant species can have major impacts on their habitat and induce trophic cascades within ecosystems. In North America, the overabundant greater snow goose (Anser caerulescens atlanticus) has been successfully controlled through special spring hunting regulations since 1999. Hunting is a source of mortality but also of disturbance, which affects the behavior and nutrient storage dynamics of staging snow geese. In 2020, the lockdown imposed by the COVID19 pandemic reduced hunting activity during their migratory stopover in Québec by at least 31%. This provided a unique opportunity to assess the effects of a sudden reduction in hunting disturbance on geese. We used long-term data on body mass combined with movement data from GPS-tracked birds in 2019 and 2020 to assess the effects of the 2020 lockdown on the spring body condition and behavior of greater snow geese. Body condition was higher in 2020 than in all years since the inception of spring hunting in 1999, except for 2019. However, in 2020 geese reached maximal body condition earlier during the staging period than in any other year and reduced by half time spent feeding in highly profitable but risky agricultural habitat in late spring compared to 2019. Although our study was not designed to evaluate the effects of the lockdown, the associated reduction in disturbance in 2020 supports the hypothesis that hunting-related disturbance negatively affects foraging efficiency and body condition in geese. Since spring body condition is related to subsequent breeding success, the lockdown could increase productivity in this overabundant population.

8.
Glob Chang Biol ; 26(11): 6276-6295, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32914511

RESUMO

Climatic impacts are especially pronounced in the Arctic, which as a region is warming twice as fast as the rest of the globe. Here, we investigate how mean climatic conditions and rates of climatic change impact parasitoid insect communities in 16 localities across the Arctic. We focus on parasitoids in a widespread habitat, Dryas heathlands, and describe parasitoid community composition in terms of larval host use (i.e., parasitoid use of herbivorous Lepidoptera vs. pollinating Diptera) and functional groups differing in their closeness of host associations (koinobionts vs. idiobionts). Of the latter, we expect idiobionts-as being less fine-tuned to host development-to be generally less tolerant to cold temperatures, since they are confined to attacking hosts pupating and overwintering in relatively exposed locations. To further test our findings, we assess whether similar climatic variables are associated with host abundances in a 22 year time series from Northeast Greenland. We find sites which have experienced a temperature rise in summer while retaining cold winters to be dominated by parasitoids of Lepidoptera, with the reverse being true for the parasitoids of Diptera. The rate of summer temperature rise is further associated with higher levels of herbivory, suggesting higher availability of lepidopteran hosts and changes in ecosystem functioning. We also detect a matching signal over time, as higher summer temperatures, coupled with cold early winter soils, are related to high herbivory by lepidopteran larvae, and to declines in the abundance of dipteran pollinators. Collectively, our results suggest that in parts of the warming Arctic, Dryas is being simultaneously exposed to increased herbivory and reduced pollination. Our findings point to potential drastic and rapid consequences of climate change on multitrophic-level community structure and on ecosystem functioning and highlight the value of collaborative, systematic sampling effort.


Assuntos
Ecossistema , Herbivoria , Animais , Regiões Árticas , Groenlândia , Interações Hospedeiro-Parasita , Larva
9.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190354, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32862818

RESUMO

Models incorporating seasonality are necessary to fully assess the impact of global warming on Arctic communities. Seasonal migrations are a key component of Arctic food webs that still elude current theories predicting a single community equilibrium. We develop a multi-season model of predator-prey dynamics using a hybrid dynamical systems framework applied to a simplified tundra food web (lemming-fox-goose-owl). Hybrid systems models can accommodate multiple equilibria, which is a basic requirement for modelling food webs whose topology changes with season. We demonstrate that our model can generate multi-annual cycling in lemming dynamics, solely from a combined effect of seasonality and state-dependent behaviour. We compare our multi-season model to a static model of the predator-prey community dynamics and study the interactions between species. Interestingly, including seasonality reveals indirect interactions between migrants and residents not captured by the static model. Further, we find that the direction and magnitude of interactions between two species are not necessarily accurate using only summer time-series. Our study demonstrates the need for the development of multi-season models and provides the tools to analyse them. Integrating seasonality in food web modelling is a vital step to improve predictions about the impacts of climate change on ecosystem functioning. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Assuntos
Migração Animal , Cadeia Alimentar , Modelos Biológicos , Tundra , Animais , Regiões Árticas , Arvicolinae , Biomassa , Raposas , Gansos , Aquecimento Global , Nunavut , Estações do Ano , Estrigiformes
10.
Mol Ecol ; 28(2): 318-335, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30418699

RESUMO

Pollination is an ecosystem function of global importance. Yet, who visits the flower of specific plants, how the composition of these visitors varies in space and time and how such variation translates into pollination services are hard to establish. The use of DNA barcodes allows us to address ecological patterns involving thousands of taxa that are difficult to identify. To clarify the regional variation in the visitor community of a widespread flower resource, we compared the composition of the arthropod community visiting species in the genus Dryas (mountain avens, family Rosaceae), throughout Arctic and high-alpine areas. At each of 15 sites, we sampled Dryas visitors with 100 sticky flower mimics and identified specimens to Barcode Index Numbers (BINs) using a partial sequence of the mitochondrial COI gene. As a measure of ecosystem functioning, we quantified variation in the seed set of Dryas. To test for an association between phylogenetic and functional diversity, we characterized the structure of local visitor communities with both taxonomic and phylogenetic descriptors. In total, we detected 1,360 different BINs, dominated by Diptera and Hymenoptera. The richness of visitors at each site appeared to be driven by local temperature and precipitation. Phylogeographic structure seemed reflective of geological history and mirrored trans-Arctic patterns detected in plants. Seed set success varied widely among sites, with little variation attributable to pollinator species richness. This pattern suggests idiosyncratic associations, with function dominated by few and potentially different taxa at each site. Taken together, our findings illustrate the role of post-glacial history in the assembly of flower-visitor communities in the Arctic and offer insights for understanding how diversity translates into ecosystem functioning.


Assuntos
Artrópodes/fisiologia , Ecossistema , Polinização/fisiologia , Rosaceae/intoxicação , Animais , Regiões Árticas , Artrópodes/genética , Código de Barras de DNA Taxonômico , Flores/genética , Flores/crescimento & desenvolvimento , Modelos Biológicos , Filogenia , Reprodução , Rosaceae/crescimento & desenvolvimento , Rosaceae/fisiologia , Sementes/genética , Sementes/crescimento & desenvolvimento
11.
J Anim Ecol ; 86(3): 683-693, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28127765

RESUMO

Understanding how individuals and populations respond to fluctuations in climatic conditions is critical to explain and anticipate changes in ecological systems. Most such studies focus on climate impacts on single populations without considering inter- and intra-population heterogeneity. However, comparing geographically dispersed populations limits the risk of faulty generalizations and helps to improve ecological and demographic models. We aimed to determine whether differences in migration tactics among and within populations would induce inter- or intra-population heterogeneity in survival in relation to winter climate fluctuations. Our study species was the Common eider (Somateria mollissima), a marine duck with a circumpolar distribution, which is strongly affected by climatic conditions during several phases of its annual cycle. Capture-mark-recapture data were collected in two arctic (northern Canada and Svalbard) and one subarctic (northern Norway) population over a period of 18, 15, and 29 years respectively. These three populations have different migration tactics and experience different winter climatic conditions. Using multi-event and mixture modelling, we assessed the association between adult female eider survival and winter conditions as measured by the North Atlantic Oscillation (NAO) index. We found that winter weather conditions affected the survival of female eiders from each of these three populations. However, different mechanisms seemed to be involved. Survival of the two migrating arctic populations was impacted directly by changes in the NAO, whereas the subarctic resident population was affected by the NAO with time lags of 2-3 years. Moreover, we found evidence for intra-population heterogeneity in the survival response to the winter NAO in the Canadian eider population, where individuals migrate to distinct wintering areas. Our results illustrate how individuals and populations of the same species can vary in their responses to climate variation. We suspect that the found variation in the survival response of birds to winter conditions is partly explained by differences in migration tactic. Detecting and accounting for inter- and intra-population heterogeneity will improve our predictions concerning the response of wildlife to global changes.


Assuntos
Mudança Climática , Patos/fisiologia , Longevidade , Animais , Feminino , Noruega , Nunavut , Dinâmica Populacional , Estações do Ano , Svalbard
12.
Oecologia ; 183(3): 653-666, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28058504

RESUMO

For migratory species, acquisition and allocation of energy after arrival on the breeding grounds largely determine reproductive decisions. Few studies have investigated underlying physiological mechanisms driving variation in breeding phenology so far. We linked physiological state to individual timing of breeding in pre-laying arctic-nesting female peregrine falcons (Falco peregrinus tundrius). We captured females from two populations 2-20 days before egg-laying to assess plasma concentration of ß-hydroxybutyric acid (BUTY) and triglyceride (TRIG), two metabolites known to reflect short-term changes in fasting and fattening rate, respectively. We also assessed baseline corticosterone (CORTb), a hormone that mediates energy allocation, and the scaled mass index (SMI) as an indicator of somatic body reserves. Plasma BUTY was slightly higher during the pre-recruiting period compared to the period of rapid follicular growth, indicating a reduction in catabolism of lipid reserves before investment in follicle development. Conversely, TRIG levels increased in pre-recruiting females, and best-predicted individual variation in pre-laying interval and lay date. A marked increase in CORTb occurred concomitantly with the onset of rapid follicle growth. SMI was highly variable possibly reflecting variation in food availability or individuals at different stages. Results suggest that (1) lower rates of pre-laying fattening and/or lower mobilization rate of lipoproteins to ovarian follicles delayed laying, and (2) an elevation in pre-laying CORTb may result from, or be required to compensate for, the energetic costs of egg production. Results of this study illustrate how variation in the allocation of energy before laying can influence individual fitness-related reproductive decisions.


Assuntos
Cruzamento , Aves Predatórias , Animais , Regiões Árticas , Corticosterona , Reprodução
13.
Am Nat ; 188(4): 434-45, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27622877

RESUMO

The influence of variation in individual state on key reproductive decisions impacting fitness is well appreciated in evolutionary ecology. Rowe et al. (1994) developed a condition-dependent individual optimization model predicting that three key factors impact the ability of migratory female birds to individually optimize breeding phenology to maximize fitness in seasonal environments: arrival condition, arrival date, and ability to gain in condition on the breeding grounds. While empirical studies have confirmed that greater arrival body mass and earlier arrival dates result in earlier laying, no study has assessed whether individual variation in energetic management of condition gain effects this key fitness-related decision. Using an 8-year data set from over 350 prebreeding female Arctic common eiders (Somateria mollissima), we tested this component of the model by examining whether individual variation in two physiological traits influencing energetic management (plasma triglycerides: physiological fattening rate; baseline corticosterone: energetic demand) predicted individual variation in breeding phenology after controlling for arrival date and body mass. As predicted by the optimization model, individuals with higher fattening rates and lower energetic demand had the earliest breeding phenology (shortest delays between arrival and laying; earliest laying dates). Our results are the first to empirically determine that individual flexibility in prebreeding energetic management influences key fitness-related reproductive decisions, suggesting that individuals have the capacity to optimally manage reproductive investment.


Assuntos
Anseriformes , Aptidão Genética , Reprodução , Animais , Regiões Árticas , Corticosterona , Feminino
14.
Proc Biol Sci ; 282(1800): 20142085, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25540279

RESUMO

For birds, unpredictable environments during the energetically stressful times of moulting and breeding are expected to have negative fitness effects. Detecting those effects however, might be difficult if individuals modulate their physiology and/or behaviours in ways to minimize short-term fitness costs. Corticosterone in feathers (CORTf) is thought to provide information on total baseline and stress-induced CORT levels at moulting and is an integrated measure of hypothalamic-pituitary-adrenal activity during the time feathers are grown. We predicted that CORTf levels in northern common eider females would relate to subsequent body condition, reproductive success and survival, in a population of eiders nesting in the eastern Canadian Arctic during a capricious period marked by annual avian cholera outbreaks. We collected CORTf data from feathers grown during previous moult in autumn and data on phenology of subsequent reproduction and survival for 242 eider females over 5 years. Using path analyses, we detected a direct relationship between CORTf and arrival date and body condition the following year. CORTf also had negative indirect relationships with both eider reproductive success and survival of eiders during an avian cholera outbreak. This indirect effect was dramatic with a reduction of approximately 30% in subsequent survival of eiders during an avian cholera outbreak when mean CORTf increased by 1 standard deviation. This study highlights the importance of events or processes occurring during moult on subsequent expression of life-history traits and relation to individual fitness, and shows that information from non-destructive sampling of individuals can track carry-over effects across seasons.


Assuntos
Anseriformes/fisiologia , Corticosterona/análise , Plumas/química , Muda/fisiologia , Reprodução/fisiologia , Animais , Anseriformes/microbiologia , Regiões Árticas , Doenças das Aves/microbiologia , Doenças das Aves/mortalidade , Doenças das Aves/fisiopatologia , Canadá , Feminino , Infecções por Pasteurella/mortalidade , Infecções por Pasteurella/fisiopatologia , Infecções por Pasteurella/veterinária , Pasteurella multocida , Estações do Ano , Estresse Fisiológico
15.
Oecologia ; 177(1): 235-43, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25411112

RESUMO

Integrative biologists have long appreciated that the effective acquisition and management of energy prior to breeding should strongly influence fitness-related reproductive decisions (timing of breeding and reproductive investment). However, because of the difficulty in capturing pre-breeding individuals, and the tendency towards abandonment of reproduction after capture, we know little about the underlying mechanisms of these life-history decisions. Over 10 years, we captured free-living, arctic-breeding common eiders (Somateria mollissima) up to 3 weeks before investment in reproduction. We examined and characterized physiological parameters predicted to influence energetic management by sampling baseline plasma glucocorticoids (i.e., corticosterone), very-low-density lipoprotein (VLDL), and vitellogenin (VTG) for their respective roles in mediating energetic balance, rate of condition gain (physiological fattening rate) and reproductive investment. Baseline corticosterone increased significantly from arrival to the initiation of reproductive investment (period of rapid follicular growth; RFG), and showed a positive relationship with body mass, indicating that this hormone may stimulate foraging behaviour to facilitate both fat deposition and investment in egg production. In support of this, we found that VLDL increased throughout the pre-breeding period, peaking as predicted during RFG. Female eiders exhibited unprecedentedly high levels of VTG well before their theoretical RFG period, a potential strategy for pre-emptively depositing available protein stores into follicles while females are simultaneously fattening. This study provides some of the first data examining the temporal dynamics and interaction of the energetic mechanisms thought to be at the heart of individual variation in reproductive decisions and success in many vertebrate species.


Assuntos
Tecido Adiposo/metabolismo , Anseriformes/metabolismo , Cruzamento , Metabolismo Energético , Óvulo , Reprodução/fisiologia , Animais , Regiões Árticas , Comportamento Animal , VLDL-Colesterol/sangue , Corticosterona/sangue , Feminino , Glucocorticoides/sangue , Estágios do Ciclo de Vida , Vitelogeninas/sangue
16.
Gen Comp Endocrinol ; 216: 39-45, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25913259

RESUMO

Diel variation in baseline glucocorticoid (GC) secretion influences energetics and foraging behaviors. In temperate breeding, diurnal vertebrates, studies have shown that daily patterns of baseline GC secretion are influenced by environmental photoperiod, with baseline GCs peaking prior to sunrise to stimulate waking and foraging behaviors. Measures of physiological energy acquisition are also expected to peak in response to foraging activity, but their relationship to GC levels have not been well studied. In contrast to temperate breeding species, virtually nothing is known about diel GC and energetic metabolite secretion in Arctic breeding species, which experience almost constant photoperiods in spring and summer. Using a ten-year dataset, we examined the daily, 24-h pattern of baseline corticosterone (CORT) and triglyceride (TRIG) secretion in approximately 800 female pre-breeding Arctic-nesting common eiders (Somateria mollissima). We related these traits to environmental photoperiod and to tidal cycle. In contrast to temperate breeding species, we found that that neither time of day nor tidal trend predicted diel variation in CORT or TRIG secretion in Arctic-breeding eiders. Given the narrow window of opportunity for breeding in polar regions, we suggest that eiders must decouple their daily foraging activity from light and tidal cycles if they are to accrue sufficient energy for successful breeding. As CORT is known to influence foraging behavior, the absence of a distinct diel pattern of CORT secretion may therefore be an adaptation to optimize reproductive investment and likelihood for success in some polar-breeding species.


Assuntos
Anseriformes/fisiologia , Cruzamento , Ritmo Circadiano , Corticosterona/metabolismo , Mergulho/fisiologia , Metabolismo Energético , Triglicerídeos/metabolismo , Animais , Regiões Árticas , Meio Ambiente , Comportamento Alimentar , Reprodução/fisiologia , Estações do Ano
17.
Oecologia ; 174(3): 1033-43, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24135996

RESUMO

Although animal population dynamics have often been correlated with fluctuations in precipitation, causal relationships have rarely been demonstrated in wild birds. We combined nest observations with a field experiment to investigate the direct effect of rainfall on survival of peregrine falcon (Falco peregrinus) nestlings in the Canadian Arctic. We then used historical data to evaluate if recent changes in the precipitation regime could explain the long-term decline of falcon annual productivity. Rainfall directly caused more than one-third of the recorded nestling mortalities. Juveniles were especially affected by heavy rainstorms (≥8 mm/day). Nestlings sheltered from rainfall by a nest box had significantly higher survival rates. We found that the increase in the frequency of heavy rain over the last three decades is likely an important factor explaining the recent decline in falcon nestling survival rates, and hence the decrease in annual breeding productivity of the population. Our study is among the first experimental demonstrations of the direct link between rainfall and survival in wild birds, and clearly indicates that top arctic predators can be significantly impacted by changes in precipitation regime.


Assuntos
Falconiformes , Mortalidade , Chuva , Animais , Feminino , Nunavut , Dinâmica Populacional
18.
Proc Biol Sci ; 279(1730): 876-83, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21865256

RESUMO

Despite observational evidence of carry-over effects (COEs, events occurring in one season that produce residual effects on individuals the following seasons), to our knowledge no experimental studies have been carried out to explore how COEs might affect reproductive output. We simulated an environmental perturbation affecting spring-staging migrants to investigate COEs in greater snow geese (Anser caerulescens atlanticus). During three consecutive years, 2037 females captured during spring staging (approx. 3000 km south of their Arctic breeding grounds) were maintained in captivity (with or without access to food) for 0-4 days. Duration of captivity (but not food treatment) negatively affected reproductive success, probably through stress response. Reproductive success was reduced by 45-71% in 2 years, but not in a third year with unusually favourable breeding conditions. This unprecedented manipulation indicates that COEs can have a strong effect on individual reproductive success in long-distance migrants, but that this effect can be partly compensated for by good environmental conditions on the breeding ground.


Assuntos
Migração Animal , Meio Ambiente , Gansos/fisiologia , Estresse Fisiológico , Animais , Feminino , Masculino , Dinâmica Populacional , Reprodução , Estações do Ano , Comportamento Sexual Animal , Fatores de Tempo
19.
J Anim Ecol ; 81(3): 533-42, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22268371

RESUMO

1. Flows of nutrients and energy across ecosystem boundaries have the potential to subsidize consumer populations and modify the dynamics of food webs, but how spatio-temporal variations in autochthonous and allochthonous resources affect consumers' subsidization remains largely unexplored. 2. We studied spatio-temporal patterns in the allochthonous subsidization of a predator living in a relatively simple ecosystem. We worked on Bylot Island (Nunavut, Canada), where arctic foxes (Vulpes lagopus L.) feed preferentially on lemmings (Lemmus trimucronatus and Dicrostonyx groenlandicus Traill), and alternatively on colonial greater snow geese (Anser caerulescens atlanticus L.). Geese migrate annually from their wintering grounds (where they feed on farmlands and marshes) to the Canadian Arctic, thus generating a strong flow of nutrients and energy across ecosystem boundaries. 3. We examined the influence of spatial variations in availability of geese on the diet of fox cubs (2003-2005) and on fox reproductive output (1996-2005) during different phases of the lemming cycle. 4. Using stable isotope analysis and a simple statistical routine developed to analyse the outputs of a multisource mixing model (SIAR), we showed that the contribution of geese to the diet of arctic fox cubs decreased with distance from the goose colony. 5. The probability that a den was used for reproduction by foxes decreased with distance from the subsidized goose colony and increased with lemming abundance. When lemmings were highly abundant, the effect of distance from the colony disappeared. The goose colony thus generated a spatial patterning of reproduction probability of foxes, while the lemming cycle generated a strong temporal variation of reproduction probability of foxes. 6. This study shows how the input of energy owing to the large-scale migration of prey affects the functional and reproductive responses of an opportunistic consumer, and how this input is spatially and temporally modulated through the foraging behaviour of the consumer. Thus, perspectives of both landscape and foraging ecology are needed to fully resolve the effects of subsidies on animal demographic processes and population dynamics.


Assuntos
Migração Animal/fisiologia , Anseriformes/fisiologia , Arvicolinae/fisiologia , Raposas/fisiologia , Comportamento Predatório/fisiologia , Animais , Regiões Árticas , Canadá , Cadeia Alimentar , Dinâmica Populacional , Reprodução , Fatores de Tempo
20.
Ecology ; 103(8): e3734, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35466413

RESUMO

Prey handling processes are considered a dominant mechanism leading to short-term positive indirect effects between prey that share a predator. However, a growing body of research indicates that predators are not necessarily limited by such processes in the wild. Density-dependent changes in predator foraging behavior can also generate positive indirect effects but they are rarely included as explicit functions of prey densities in functional response models. With the aim of untangling proximate mechanisms of species interactions in natural communities and improving our ability to quantify interaction strength, we extended the multi-prey version of the Holling disk equation by including density-dependent changes in predator foraging behavior. Our model, based on species traits and behavior, was inspired by the vertebrate community of the arctic tundra, where the main predator (the arctic fox) is an active forager feeding primarily on cyclic small rodent (lemming) and eggs of various tundra-nesting bird species. Short-term positive indirect effects of lemmings on birds have been documented over the circumpolar Arctic but the underlying mechanisms remain poorly understood. We used a unique data set, containing high-frequency GPS tracking, accelerometer, behavioral, and experimental data to parameterize the multi-prey model, and a 15-year time series of prey densities and bird nesting success to evaluate interaction strength between species. We found that (1) prey handling processes play a minor role in our system and (2) changes in arctic fox daily activity budget and distance traveled can partly explain the predation release on birds observed during lemming peaks. These adjustments in predator foraging behavior with respect to the main prey density thus appear as the dominant mechanism leading to positive indirect effects commonly reported among arctic tundra prey. Density-dependent changes in functional response components have been little studied in natural vertebrate communities and deserve more attention to improve our ability to quantify the strength of species interactions.


Assuntos
Comportamento Predatório , Tundra , Animais , Regiões Árticas , Arvicolinae/fisiologia , Aves/fisiologia , Raposas/fisiologia , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA