Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 24(8): 4668-4676, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32155324

RESUMO

Class III receptor tyrosine kinases control the development of hematopoietic stem cells. Constitutive activation of FLT3 by internal tandem duplications (ITD) in the juxtamembrane domain has been causally linked to acute myeloid leukaemia. Oncogenic FLT3 ITD is partially retained in compartments of the biosynthetic route and aberrantly activates STAT5, thereby promoting cellular transformation. The pool of FLT3 ITD molecules in the plasma membrane efficiently activates RAS and AKT, which is likewise essential for cell transformation. Little is known about features and mechanisms of FLT3 ligand (FL)-dependent internalization of surface-bound FLT3 or FLT3 ITD. We have addressed this issue by internalization experiments using human RS4-11 and MV4-11 cells with endogenous wild-type FLT3 or FLT3 ITD expression, respectively, and surface biotinylation. Further, FLT3 wild-type, or FLT3 ITD-GFP hybrid proteins were stably expressed and characterized in 32D cells, and internalization and stability were assessed by flow cytometry, imaging flow cytometry, and immunoblotting. FL-stimulated surface-exposed FLT3 WT or FLT3 ITD protein showed similar endocytosis and degradation characteristics. Kinase inactivation by mutation or FLT3 inhibitor treatment strongly promoted FLT3 ITD surface localization, and attenuated but did not abrogate FL-induced internalization. Experiments with the dynamin inhibitor dynasore suggest that active FLT3 as well as FLT3 ITD is largely endocytosed via clathrin-dependent endocytosis. Internalization of kinase-inactivated molecules occurred through a different yet unidentified mechanism. Our data demonstrate that FLT3 WT and constitutively active FLT3 ITD receptor follow, despite very different biogenesis kinetics, similar internalization and degradation routes.


Assuntos
Transformação Celular Neoplásica/genética , Leucemia Mieloide Aguda/genética , Proteínas de Membrana/genética , Fator de Transcrição STAT5/genética , Tirosina Quinase 3 Semelhante a fms/genética , Carcinogênese , Duplicação Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Células-Tronco Hematopoéticas/patologia , Humanos , Leucemia Mieloide Aguda/patologia , Ligantes , Mutação , Sequências de Repetição em Tandem/genética
2.
Glia ; 65(2): 416-428, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27859601

RESUMO

Microglia cells are brain macrophages whose proper functioning is essential for maintenance and repair processes of the central nervous system (CNS). Migration and phagocytosis are critical aspects of microglial activity. By using genetically modified cell lines and knockout mice we demonstrate here that the receptor protein-tyrosine phosphatase (PTP) DEP-1 (also known as PTPRJ or CD148) acts as a positive regulator of both processes in vitro and in vivo. Notably, reduced microglial migration was detectable in brains of Ptprj-/- mice using a wounding assay. Mechanistically, density-enhanced phosphatase-1 (DEP-1) may in part function by inhibiting the activity of the Src family kinase Fyn. In the microglial cell line BV2 DEP-1 depletion by shRNA-mediated knockdown resulted in enhanced phosphorylation of the Fyn activating tyrosine (Tyr420 ) and elevated specific Fyn-kinase activity in immunoprecipitates. Moreover, Fyn mRNA and protein levels were reduced in DEP-1 deficient microglia cells. Consistent with a negative regulatory role of Fyn for microglial functions, which is inhibited by DEP-1, microglial cells from Fyn-/- mice exhibited elevated migration and phagocytosis. Enhanced microglia migration to a site of injury was also observed in Fyn-/- mice in vivo. Taken together our data revealed a previously unrecognized role of DEP-1 and suggest the existence of a potential DEP-1-Fyn axis in the regulation of microglial functions. GLIA 2017;65:416-428.


Assuntos
Movimento Celular/fisiologia , Regulação da Expressão Gênica/genética , Microglia/fisiologia , Fagocitose/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Animais , Animais Recém-Nascidos , Linhagem Celular Transformada , Movimento Celular/genética , Células Cultivadas , Córtex Cerebral/citologia , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose/fisiologia , Proteínas Proto-Oncogênicas c-fyn/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo
3.
Mol Cell ; 36(2): 326-39, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19854140

RESUMO

Inappropriate activation of oncogenic kinases at intracellular locations is frequently observed in human cancers, but its effects on global signaling are incompletely understood. Here, we show that the oncogenic mutant of Flt3 (Flt3-ITD), when localized at the endoplasmic reticulum (ER), aberrantly activates STAT5 and upregulates its targets, Pim-1/2, but fails to activate PI3K and MAPK signaling. Conversely, membrane targeting of Flt3-ITD strongly activates the MAPK and PI3K pathways, with diminished phosphorylation of STAT5. Global phosphoproteomics quantified 12,186 phosphorylation sites, confirmed compartment-dependent activation of these pathways and discovered many additional components of Flt3-ITD signaling. The differential activation of Akt and Pim kinases by ER-retained Flt3-ITD helped to identify their putative targets. Surprisingly, we find spatial regulation of tyrosine phosphorylation patterns of the receptor itself. Thus, intracellular activation of RTKs by oncogenic mutations in the biosynthetic route may exploit cellular architecture to initiate aberrant signaling cascades, thus evading negative regulation.


Assuntos
Oncogenes , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Brefeldina A/farmacologia , Compartimento Celular/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/enzimologia , Ativação Enzimática/efeitos dos fármacos , Células HeLa , Humanos , Marcação por Isótopo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Estrutura Terciária de Proteína , Proteômica , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores Proteína Tirosina Quinases/química , Fator de Transcrição STAT5/metabolismo , Deleção de Sequência , Transdução de Sinais/efeitos dos fármacos , Tunicamicina/farmacologia , Tirosina Quinase 3 Semelhante a fms/química , Tirosina Quinase 3 Semelhante a fms/metabolismo
4.
Genes Dev ; 23(2): 223-35, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19171783

RESUMO

Cytokines such as interferons (IFNs) activate signal transducers and activators of transcription (STATs) via phosphorylation. Histone deacetylases (HDACs) and the histone acetyltransferase (HAT) CBP dynamically regulate STAT1 acetylation. Here we show that acetylation of STAT1 counteracts IFN-induced STAT1 phosphorylation, nuclear translocation, DNA binding, and target gene expression. Biochemical and genetic experiments altering the HAT/HDAC activity ratio and STAT1 mutants reveal that a phospho-acetyl switch regulates STAT1 signaling via CBP, HDAC3, and the T-cell protein tyrosine phosphatase (TCP45). Strikingly, inhibition of STAT1 signaling via CBP-mediated acetylation is distinct from the functions of this HAT in transcriptional activation. STAT1 acetylation induces binding of TCP45, which catalyzes dephosphorylation and latency of STAT1. Our results provide a deeper understanding of the modulation of STAT1 activity. These findings reveal a new layer of physiologically relevant STAT1 regulation and suggest that a previously unidentified balance between phosphorylation and acetylation affects cytokine signaling.


Assuntos
Regulação da Expressão Gênica , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/fisiologia , Acetilação , Linhagem Celular , Histona Desacetilases/metabolismo , Humanos , Interferon-alfa/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo
5.
J Cell Sci ; 126(Pt 20): 4746-55, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23943874

RESUMO

FMS-like tyrosine kinase 3 with internal tandem duplication (FLT3 ITD) is an important oncoprotein in acute myeloid leukemia (AML). Owing to its constitutive kinase activity FLT3 ITD partially accumulates at endomembranes, a feature shared with other disease-associated, mutated receptor tyrosine kinases. Because Ras proteins also transit through endomembranes we have investigated the possible existence of an intracellular FLT3-ITD/Ras signaling pathway by comparing Ras signaling of FLT3 ITD with that of wild-type FLT3. Ligand stimulation activated both K- and N-Ras in cells expressing wild-type FLT3. Live-cell Ras-GTP imaging revealed ligand-induced Ras activation at the plasma membrane (PM). FLT3-ITD-dependent constitutive activation of K-Ras and N-Ras was also observed primarily at the PM, supporting the view that the PM-resident pool of FLT3 ITD engaged the Ras/Erk pathway in AML cells. Accordingly, specific interference with FLT3-ITD/Ras signaling at the PM using PM-restricted dominant negative K-RasS17N potently inhibited cell proliferation and promoted apoptosis. In conclusion, Ras signaling is crucial for FLT3-ITD-dependent cell transformation and FLT3 ITD addresses PM-bound Ras despite its pronounced mislocalization to endomembranes.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo , Proteínas ras/metabolismo , Animais , Processos de Crescimento Celular/fisiologia , Membrana Celular/genética , Membrana Celular/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Genes ras , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Fosforilação , Transdução de Sinais , Sequências de Repetição em Tandem , Células Tumorais Cultivadas , Tirosina Quinase 3 Semelhante a fms/genética , Proteínas ras/genética
6.
J Neurooncol ; 122(3): 451-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25672645

RESUMO

Brain-invasive growth of a subset of meningiomas is associated with less favorable prognosis. The molecular mechanisms causing invasiveness are only partially understood, however, the expression of matrix metalloproteinases (MMPs) has been identified as a contributing factor. We have previously found that loss of density enhanced phosphatase-1 (DEP-1, also designated PTPRJ), a transmembrane protein-tyrosine phosphatase, promotes meningioma cell motility and invasive growth in an orthotopic xenotransplantation model. We have now analyzed potential alterations of the expression of genes involved in motility control, caused by DEP-1 loss in meningioma cell lines. DEP-1 depleted cells exhibited increased expression of mRNA encoding MMP-9, and the growth factors EGF and FGF-2. The increase of MMP-9 expression in DEP-1 depleted cells was also readily detectable at the protein level by zymography. MMP-9 upregulation was sensitive to chemical inhibitors of growth factor signal transduction. Conversely, MMP-9 mRNA levels could be stimulated with growth factors (e.g. EGF) and inflammatory cytokines (e.g. TNFα). Increase of MMP-9 expression by DEP-1 depletion, or growth factor/cytokine stimulation qualitatively correlated with increased invasiveness in vitro scored as transmigration through matrigel-coated membranes. The studies suggest induction of MMP-9 expression promoted by DEP-1 deficiency, or potentially by growth factors and inflammatory cytokines, as a mechanism contributing to meningioma brain invasiveness.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Glioma/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Análise de Variância , Linhagem Celular Tumoral , Citocinas/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/patologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Neurofibromatose 2/genética , Neurofibromatose 2/metabolismo , RNA Mensageiro/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/deficiência , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Transfecção
7.
Nat Rev Cancer ; 6(4): 307-20, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16557282

RESUMO

Tyrosine phosphorylation is an important signalling mechanism in eukaryotic cells. In cancer, oncogenic activation of tyrosine kinases is a common feature, and novel anticancer drugs have been introduced that target these enzymes. Tyrosine phosphorylation is also controlled by protein-tyrosine phosphatases (PTPs). Recent evidence has shown that PTPs can function as tumour suppressors. In addition, some PTPs, including SHP2, positively regulate the signalling of growth-factor receptors, and can be oncogenic. An improved understanding of how these enzymes function and how they are regulated might aid the development of new anticancer agents.


Assuntos
Neoplasias/enzimologia , Proteínas Tirosina Fosfatases/metabolismo , Animais , Receptores ErbB/metabolismo , Humanos , Neoplasias/terapia , Fosforilação , Proteínas Tirosina Fosfatases/genética , Tirosina
8.
Blood ; 119(19): 4499-511, 2012 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-22438257

RESUMO

Signal transduction of FMS-like tyrosine kinase 3 (FLT3) is regulated by protein-tyrosine phosphatases (PTPs). We recently identified the PTP DEP-1/CD148/PTPRJ as a novel negative regulator of FLT3. This study addressed the role of DEP-1 for regulation of the acute myeloid leukemia (AML)-related mutant FLT3 internal tandem duplication (ITD) protein. Our experiments revealed that DEP-1 was expressed but dysfunctional in cells transformed by FLT3 ITD. This was caused by enzymatic inactivation of DEP-1 through oxidation of the DEP-1 catalytic cysteine. In intact cells, including primary AML cells, FLT3 ITD kinase inhibition reactivated DEP-1. DEP-1 reactivation was also achieved by counteracting the high levels of reactive oxygen species (ROS) production detected in FLT3 ITD-expressing cell lines by inhibition of reduced NAD phosphate (NADPH)-oxidases, or by overexpression of catalase or peroxiredoxin-1 (Prx-1). Interference with ROS production in 32D cells inhibited cell transformation by FLT3 ITD in a DEP-1-dependent manner, because RNAi-mediated depletion of DEP-1 partially abrogated the inhibitory effect of ROS quenching. Reactivation of DEP-1 by stable overexpression of Prx-1 extended survival of mice in the 32D cell/C3H/HeJ mouse model of FLT3 ITD-driven myeloproliferative disease. The study thus uncovered DEP-1 oxidation as a novel event contributing to cell transformation by FLT3 ITD.


Assuntos
Transformação Celular Neoplásica/genética , Leucemia Mieloide Aguda/genética , Tirosina Quinase 3 Semelhante a fms/genética , Animais , Linhagem Celular Tumoral , Genes Supressores de Tumor/efeitos dos fármacos , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C3H , Oxidantes/farmacologia , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/farmacologia , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/antagonistas & inibidores , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Sequências de Repetição em Tandem/genética , Transfecção
10.
J Biol Chem ; 286(13): 10918-29, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21262971

RESUMO

Fms-like tyrosine kinase 3 (FLT3) plays an important role in hematopoietic differentiation, and constitutively active FLT3 mutant proteins contribute to the development of acute myeloid leukemia. Little is known about the protein-tyrosine phosphatases (PTP) affecting the signaling activity of FLT3. To identify such PTP, myeloid cells expressing wild type FLT3 were infected with a panel of lentiviral pseudotypes carrying shRNA expression cassettes targeting different PTP. Out of 20 PTP tested, expressed in hematopoietic cells, or presumed to be involved in oncogenesis or tumor suppression, DEP-1 (PTPRJ) was identified as a PTP negatively regulating FLT3 phosphorylation and signaling. Stable 32D myeloid cell lines with strongly reduced DEP-1 levels showed site-selective hyperphosphorylation of FLT3. In particular, the sites pTyr-589, pTyr-591, and pTyr-842 involved in the FLT3 ligand (FL)-mediated activation of FLT3 were hyperphosphorylated the most. Similarly, acute depletion of DEP-1 in the human AML cell line THP-1 caused elevated FLT3 phosphorylation. Direct interaction of DEP-1 and FLT3 was demonstrated by "substrate trapping" experiments showing association of DEP-1 D1205A or C1239S mutant proteins with FLT3 by co-immunoprecipitation. Moreover, activated FLT3 could be dephosphorylated by recombinant DEP-1 in vitro. Enhanced FLT3 phosphorylation in DEP-1-depleted cells was accompanied by enhanced FLT3-dependent activation of ERK and cell proliferation. Stable overexpression of DEP-1 in 32D cells and transient overexpression with FLT3 in HEK293 cells resulted in reduction of FL-mediated FLT3 signaling activity. Furthermore, FL-stimulated colony formation of 32D cells expressing FLT3 in methylcellulose was induced in response to shRNA-mediated DEP-1 knockdown. This transforming effect of DEP-1 knockdown was consistent with a moderately increased activation of STAT5 upon FL stimulation but did not translate into myeloproliferative disease formation in the 32D-C3H/HeJ mouse model. The data indicate that DEP-1 is negatively regulating FLT3 signaling activity and that its loss may contribute to but is not sufficient for leukemogenic cell transformation.


Assuntos
Transdução de Sinais/fisiologia , Tirosina Quinase 3 Semelhante a fms/metabolismo , Substituição de Aminoácidos , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Ativação Enzimática/fisiologia , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Leucemia/genética , Leucemia/metabolismo , Masculino , Camundongos , Mutação de Sentido Incorreto , Fosforilação , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Tirosina Quinase 3 Semelhante a fms/genética
11.
Cell Commun Signal ; 10(1): 19, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22784513

RESUMO

Protein-tyrosine phosphatases (PTPs) are important regulators of cellular signaling and changes in PTP activity can contribute to cell transformation. Little is known about the role of PTPs in Acute Myeloid Leukemia (AML). The aim of this study was therefore to establish a PTP expression profile in AML cells and to explore the possible role of FLT3 ITD (Fms-like tyrosine kinase 3 with internal tandem duplication), an important oncoprotein in AML for PTP gene expression. PTP mRNA expression was analyzed in AML cells from patients and in cell lines using a RT-qPCR platform for detection of transcripts of 92 PTP genes. PTP mRNA expression was also analyzed based on a public microarray data set for AML patients. Highly expressed PTPs in AML belong to all PTP subfamilies. Very abundantly expressed PTP genes include PTPRC, PTPN2, PTPN6, PTPN22, DUSP1, DUSP6, DUSP10, PTP4A1, PTP4A2, PTEN, and ACP1. PTP expression was further correlated with the presence of FLT3 ITD, focusing on a set of highly expressed dual-specificity phosphatases (DUSPs). Elevated expression of DUSP6 in patients harboring FLT3 ITD was detected in this analysis. The mechanism and functional role of FLT3 ITD-mediated upregulation of DUSP6 was then explored using pharmacological inhibitors of FLT3 ITD signal transduction and si/shRNA technology in human and murine cell lines. High DUSP6 expression was causally associated with the presence of FLT3 ITD and dependent on FLT3 ITD kinase activity and ERK signaling. DUSP6 depletion moderately increased ERK1/2 activity but attenuated FLT3 ITD-dependent cell proliferation of 32D cells. In conclusion, DUSP6 may play a contributing role to FLT3 ITD-mediated cell transformation.

12.
Bioorg Med Chem ; 20(1): 125-36, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22169601

RESUMO

Several members of the quinazoline class of known tyrosine kinase inhibitors are approved anticancer agents, often showing selectivity for receptors of the HER/ErbB-family. Combining structural elements of this class with the bisindolylmethanone-structure led to a series of novel compounds. These compounds inhibited EGFR in the nanomolar range. Moreover, inhibition of EGFR autophosphorylation in intact A431 cells was shown, with IC(50) values ranging form 0.3-1µM for compound 42, and 0.1-0.3µM for 45. In a panel of 42 human tumor cell lines the sensitivity profile of the novel compounds was shown to be similar to that of the quinazoline class of tyrosine kinase inhibitors lapatinib and erlotinib (Tarceva®).


Assuntos
Antineoplásicos/química , Receptores ErbB/antagonistas & inibidores , Indóis/química , Pirimidinas/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/metabolismo , Humanos , Indóis/síntese química , Indóis/farmacologia , Fosforilação/efeitos dos fármacos , Pirimidinas/síntese química , Pirimidinas/farmacologia , Quinazolinas/síntese química , Quinazolinas/química , Quinazolinas/farmacologia , Relação Estrutura-Atividade
13.
Antioxidants (Basel) ; 11(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35326163

RESUMO

Acute myeloid leukemia (AML) cells harbor elevated levels of reactive oxygen species (ROS), which promote cell proliferation and cause oxidative stress. Therefore, the inhibition of ROS formation or elevation beyond a toxic level have been considered as therapeutic strategies. ROS elevation has recently been linked to enhanced NADPH oxidase 4 (NOX4) activity. Therefore, the compound Setanaxib (GKT137831), a clinically advanced ROS-modulating substance, which has initially been identified as a NOX1/4 inhibitor, was tested for its inhibitory activity on AML cells. Setanaxib showed antiproliferative activity as single compound, and strongly enhanced the cytotoxic action of anthracyclines such as daunorubicin in vitro. Setanaxib attenuated disease in a mouse model of FLT3-ITD driven myeloproliferation in vivo. Setanaxib did not significantly inhibit FLT3-ITD signaling, including FLT3 autophosphorylation, activation of STAT5, AKT, or extracellular signal regulated kinase 1 and 2 (ERK1/2). Surprisingly, the effects of Setanaxib on cell proliferation appeared to be independent of the presence of NOX4 and were not associated with ROS quenching. Instead, Setanaxib caused elevation of ROS levels in the AML cells and importantly, enhanced anthracycline-induced ROS formation, which may contribute to the combined effects. Further assessment of Setanaxib as potential enhancer of cytotoxic AML therapy appears warranted.

14.
J Cancer Res Clin Oncol ; 148(8): 1983-1990, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35348887

RESUMO

PURPOSE: Oxidative stress has been linked to initiation and progression of cancer and recent studies have indicated a potential translational role regarding modulation of ROS in various cancers, including acute myeloid leukemia (AML). Detailed understanding of the complex machinery regulating ROS including its producer elements in cancer is required to define potential translational therapeutic use. Based on previous studies in acute myeloid leukemia (AML) models, we considered NADPH oxidase (NOX) family members, specifically NOX4 as a potential target in AML. METHODS: Pharmacologic inhibition and genetic inactivation of NOX4 in murine and human models of AML were used to understand its functional role. For genetic inactivation, CRISPR-Cas9 technology was used in human AML cell lines in vitro and genetically engineered knockout mice for Nox4 were used for deletion of Nox4 in hematopoietic cells via Mx1-Cre recombinase activation. RESULTS: Pharmacologic NOX inhibitors and CRISPR-Cas9-mediated inactivation of NOX4 and p22-phox (an essential NOX component) decreased proliferative capacity and cell competition in FLT3-ITD-positive human AML cells. In contrast, conditional deletion of Nox4 enhanced the myeloproliferative phenotype of an FLT3-ITD induced knock-in mouse model. Finally, Nox4 inactivation in normal hematopoietic stem and progenitor cells (HSPCs) caused a minor reduction in HSC numbers and reconstitution capacity. CONCLUSION: The role of NOX4 in myeloid malignancies appears highly context-dependent and its inactivation results in either enhancing or inhibitory effects. Therefore, targeting NOX4 in FLT3-ITD positive myeloid malignancies requires additional pre-clinical assessment.


Assuntos
Leucemia Mieloide Aguda , Transtornos Mieloproliferativos , NADPH Oxidase 4 , Animais , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Knockout , Mutação , Transtornos Mieloproliferativos/genética , NADPH Oxidase 4/genética , Espécies Reativas de Oxigênio/metabolismo , Tirosina Quinase 3 Semelhante a fms/genética
15.
Blood ; 113(17): 4063-73, 2009 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-19144992

RESUMO

Currently, FLT3 tyrosine kinase inhibitors (TKIs) are emerging as the most promising drug therapy to overcome the dismal prognosis of acute myelogenous leukemia (AML) patients harboring internal tandem duplications (ITDs) of FLT3. However, up-front drug resistance occurs in approximately 30% of patients, and molecular mechanisms of resistance are poorly understood. Here, we have uncovered a novel mechanism of primary resistance to FLT3 TKIs in AML: an FLT3 receptor harboring a nonjuxtamembrane ITD atypically integrating into the beta-2 sheet of the first kinase domain (FLT3_ITD627E) induces dramatic up-regulation of the anti-apoptotic myeloid cell leukemia 1 protein (MCL-1). Using RNA interference technology, deregulated MCL-1 protein expression was shown to play a major role in conferring the resistance phenotype of 32D_ITD627E cells. Enhanced and sustained binding of the adaptor protein GRB-2 to the FLT3_ITD627E receptor is involved in MCL-1 up-regulation and is independent from TKI (PKC412)-induced inhibition of the receptor kinase. Thus, we describe a new mechanism of primary resistance to TKIs, which operates by reprogramming local and distant signal transduction events of the FLT3 tyrosine kinase. The data presented suggest that particular ITDs of FLT3 may be associated with rewired signaling and differential responsiveness to TKIs.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/patologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fenótipo , Análise Serial de Proteínas , Transdução de Sinais/efeitos dos fármacos , Estaurosporina/análogos & derivados , Estaurosporina/farmacologia , Estaurosporina/uso terapêutico , Especificidade por Substrato , Regulação para Cima/efeitos dos fármacos , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
16.
Blood ; 113(15): 3568-76, 2009 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-19204327

RESUMO

The mechanism of cell transformation by Fms-like tyrosine kinase 3 (FLT3) in acute myeloid leukemia (AML) is incompletely understood. The most prevalent activated mutant FLT3 ITD exhibits an altered signaling quality, including strong activation of the STAT5 transcription factor. FLT3 ITD has also been found partially retained as a high-mannose precursor in an intracellular compartment. To analyze the role of intracellular retention of FLT3 for transformation, we have generated FLT3 versions that are anchored in the perinuclear endoplasmic reticulum (ER) by appending an ER retention sequence containing a RRR (R3) motif. ER retention of R3, but not of corresponding A3 FLT3 versions, is shown by biochemical, fluorescence-activated cell sorting, and immunocytochemical analyses. ER anchoring reduced global autophosphorylation and diminished constitutive activation of ERK1/2 and AKT of the constitutively active FLT3 versions. ER anchoring was, however, associated with elevated signaling to STAT3. Transforming activity of the FLT3 D835Y mutant was suppressed by ER anchoring. In contrast, ER-anchored FLT3 ITD retained STAT5-activating capacity and was transforming in vitro and in vivo. The findings highlight another aspect of the different signaling quality of FLT3 ITD: It can transform cells from an intracellular location.


Assuntos
Retículo Endoplasmático/metabolismo , Leucemia Mieloide Aguda/metabolismo , Transdução de Sinais/fisiologia , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo , Animais , Divisão Celular/fisiologia , Linhagem Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Duplicação Gênica , Humanos , Rim/citologia , Leucemia Mieloide Aguda/genética , Camundongos , Camundongos Endogâmicos C3H , Mutagênese , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/metabolismo
17.
J Oral Pathol Med ; 40(1): 46-54, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20819124

RESUMO

Epithelial-mesenchymal transition (EMT) is suggested to be crucial for the development of an invasive and metastatic carcinoma cell phenotype. Therefore, the definition of this phenotype is of great clinical interest. We recently evidenced vimentin positive cells in oral squamous cell carcinoma (OSCC) invasive front expressing laminin γ2 chain mRNA implicating an EMT origin of these cells. To further elucidate the nature of these cells, we have investigated the relation between EMT criteria and laminin-332 expression in a cell culture model of transforming growth factor beta-1 (TGFß1)/epithelial growth factor (EGF) long time co-stimulation. We demonstrate that in contrast to TGFß1 or EGF alone, co-stimulation induces phenotype transition in OSCC cells which fulfils the criteria of EMT in terms of vimentin up-regulation and E-cadherin down-regulation on protein level as well as cell scattering. Furthermore, cells displayed a strongly enhanced invasiveness and adhesion to type I-IV collagens. Phenotype transition is accompanied by an enhanced expression of laminin-332, especially of its γ2 chain. We further analyse the expression of extracellular matrix related genes by RT-PCR profiling. With respect to strongly enhanced proteins, data confirm the EMT phenotype of co-stimulated OSCC cells and expression of laminin-332. Furthermore, alpha catenin, collagen type 16, the integrin α7 and ß1 chains, and MMP11 are suggested as candidates with potential role in EMT in OSCC. In summary we are able to show that EMT in OSCC is mediated by multiple growth factors and is accompanied by laminin γ2 chain up-regulation evidencing the existence of an intermediate Vim(+) /Ln332(+) EMT phenotype as seen in situ.


Assuntos
Carcinoma de Células Escamosas/patologia , Moléculas de Adesão Celular/metabolismo , Transformação Celular Neoplásica/patologia , Neoplasias Bucais/patologia , Fator de Crescimento Transformador beta1/fisiologia , Carcinoma de Células Escamosas/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Fator de Crescimento Epidérmico/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Proteínas da Matriz Extracelular/metabolismo , Humanos , Laminina/metabolismo , Neoplasias Bucais/metabolismo , Invasividade Neoplásica , Vimentina/metabolismo , Calinina
18.
Circulation ; 120(2): 150-9, 2009 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-19564559

RESUMO

BACKGROUND: Monocytes are cellular components of wound repair, arteriogenesis, and atherogenesis. Vascular endothelial growth factor (VEGF)-A and placental growth factor recruit monocytes to sites of arteriogenesis via stimulation of VEGF receptor-1 (VEGFR-1). The chemotactic response of monocytes to VEGF-A is attenuated in individuals with diabetes mellitus (DM). This VEGF resistance correlates with impaired collateral growth. The aim of this study is to elucidate the molecular basis of VEGF resistance and impaired monocyte response in DM. METHODS AND RESULTS: Phosphorylation of Akt, p38, and extracellular signal-regulated kinase 1/2 (ERK1/2) could be stimulated with either placental growth factor-1 or VEGF-A in monocytes from non-DM but not DM individuals. In contrast, formyl-methionyl-leucyl-phenylalanine caused a comparable activation of these molecules in both DM and non-DM monocytes. Baseline phosphorylation of Akt, p38, and ERK1/2 was significantly elevated in monocytes from DM compared with non-DM subjects. Of note, H(2)O(2) activated Akt, p38, and ERK1/2 in non-DM monocytes ex vivo. Protein tyrosine phosphatases had stronger oxidative modifications in monocytes from DM than from non-DM individuals, which reflects functional protein tyrosine phosphatase inhibition, similar to that seen after H(2)O(2) challenge. Overall, protein tyrosine phosphatase and protein tyrosine phosphatase-1B activity were reduced in DM monocytes. DM monocytes revealed higher expression of the receptor for advanced glycation end products. Stimulation with advanced glycation end products ligands resulted in activation of non-DM monocytes and inhibition of VEGFR-1-mediated chemotaxis. The elevated baseline phosphorylation/activation of Akt, p38, and ERK1/2 in DM monocytes likely causes the resistance to further stimulation with specific stimuli such as VEGF-A, revealing a molecular explanation of the DM-related signal transduction defect. CONCLUSIONS: We propose that elevated advanced glycation end products expression and increased oxidative stress in diabetic monocytes lead to activation of VEGFR-1-related signaling pathways and to desensitization of VEGFR-1 responses. These data establish VEGF resistance as a novel molecular concept for DM-related cellular dysfunction.


Assuntos
Diabetes Mellitus/fisiopatologia , Monócitos/fisiologia , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Idoso , Artérias/fisiopatologia , Estudos de Casos e Controles , Feminino , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neovascularização Patológica/fisiopatologia , Estresse Oxidativo/fisiologia , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Anticancer Drugs ; 21(8): 759-65, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20613486

RESUMO

Combined treatment with tyrosine kinase inhibitors (TKi) and additional drugs is emerging as a promising strategy for cancer therapy. TKi and histone-deacetylase inhibitors (HDI) are two classes of anti-tumor agents with distant mechanisms of action. We have designed and synthesized chimeric compounds, which comprise structural elements of the TKi imatinib, and of prototypical HDI compounds. These compounds retain TKi activity similar to imatinib, exemplified by the inhibition of the platelet-derived growth factor receptor, and c-Kit kinase in intact cells. In addition, the chimeric compounds have in vitro and cellular HDI activity, and potently inhibit growth of cancer cell lines, including that of imatinib-resistant cell lines. Chimeric molecules with combined TKi and HDI activity may simplify combination treatment and be applicable to overcome clinical resistance to TKi single-agent therapy.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Antineoplásicos/síntese química , Benzamidas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Inibidores de Histona Desacetilases/síntese química , Humanos , Mesilato de Imatinib , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/síntese química , Pirimidinas/uso terapêutico , Receptores do Fator de Crescimento Derivado de Plaquetas/efeitos dos fármacos , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo
20.
Nucleic Acids Res ; 36(13): 4443-53, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18603590

RESUMO

Analysis of the human protein-tyrosine phosphatase (PTP) PTPRJ mRNA detected three in-frame AUGs at the 5'-end (starting at nt +14, +191 and +356) with no intervening stop codons. This tandem AUG arrangement is conserved between humans and the mouse and is unique among the genes of the classical PTPs. Until now it was assumed that the principal open reading frame (ORF) starts at AUG(356). Our experiments showed that: (i) translation of the mRNA synthesized under the PTPRJ promoter starts predominantly at AUG(191), leading to the generation of a 55 amino acid sequence preceding the signal peptide; (ii) the longer form is being likewise correctly processed into mature PTPRJ; (iii) the translation of the region between AUG(191) and AUG(356) inhibits the overall expression, a feature which depends on the sequence of the encoded peptide. Specifically, a sequence of 13 amino acids containing multiple arginine residues (RRTGWRRRRRRRR) confers the inhibition. In the absence of uORF these previously unrecognized characteristics of the 5'-end of the mRNA present a novel mechanism to suppress, and potentially to regulate translation.


Assuntos
Regiões 5' não Traduzidas/química , Terminação Traducional da Cadeia Peptídica , Sequência de Bases , Linhagem Celular , Códon , Códon de Iniciação , Sequência Conservada , Éxons , Humanos , Dados de Sequência Molecular , Elongação Traducional da Cadeia Peptídica , Iniciação Traducional da Cadeia Peptídica , Biossíntese de Proteínas , RNA Mensageiro/química , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/biossíntese , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA