Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(4): e1010430, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35446923

RESUMO

Staphylococcus aureus is frequently detected in patients with sepsis and thus represents a major health burden worldwide. CD4+ T helper cells are involved in the immune response to S. aureus by supporting antibody production and phagocytosis. In particular, Th1 and Th17 cells secreting IFN-γ and IL-17A, are involved in the control of systemic S. aureus infections in humans and mice. To investigate the role of T cells in severe S. aureus infections, we established a mouse sepsis model in which the kidney was identified to be the organ with the highest bacterial load and abundance of Th17 cells. In this model, IL-17A but not IFN-γ was required for bacterial control. Using Il17aCre × R26YFP mice we could show that Th17 fate cells produce Th17 and Th1 cytokines, indicating a high degree of Th17 cell plasticity. Single cell RNA-sequencing of renal Th17 fate cells uncovered their heterogeneity and identified a cluster with a Th1 expression profile within the Th17 cell population, which was absent in mice with T-bet/Tbx21-deficiency in Th17 cells (Il17aCre x R26eYFP x Tbx21-flox). Blocking Th17 to Th1 transdifferentiation in Th17 fate cells in these mice resulted in increased S. aureus tissue loads. In summary, we highlight the impact of Th17 cells in controlling systemic S. aureus infections and show that T-bet expression by Th17 cells is required for bacterial clearance. While targeting the Th17 cell immune response is an important therapeutic option in autoimmunity, silencing Th17 cells might have detrimental effects in bacterial infections.


Assuntos
Sepse , Infecções Estafilocócicas , Proteínas com Domínio T/metabolismo , Animais , Plasticidade Celular , Humanos , Interleucina-17 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Staphylococcus aureus , Células Th1 , Células Th17
2.
Clin Infect Dis ; 76(3): e263-e273, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35717654

RESUMO

BACKGROUND: The ongoing coronavirus disease 2019 pandemic significantly burdens hospitals and other healthcare facilities. Therefore, understanding the entry and transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for effective prevention and preparedness measures. We performed surveillance and analysis of testing and transmission of SARS-CoV-2 infections in a tertiary-care hospital in Germany during the second and third pandemic waves in fall/winter 2020. METHODS: Between calendar week 41 in 2020 and calendar week 1 in 2021, 40%, of all positive patient and staff samples (284 total) were subjected to full-length viral genome sequencing. Clusters were defined based on similar genotypes indicating common sources of infection. We integrated phylogenetic, spatial, and temporal metadata to detect nosocomial infections and outbreaks, uncover transmission chains, and evaluate containment measures' effectiveness. RESULTS: Epidemiologic data and contact tracing readily recognize most healthcare-associated (HA) patient infections. However, sequencing data reveal that temporally preceding index cases and transmission routes can be missed using epidemiologic methods, resulting in delayed interventions and serially linked outbreaks being counted as independent events. While hospital-associated transmissions were significantly elevated at a moderate rate of community transmission during the second wave, systematic testing and high vaccination rates among staff have led to a substantial decrease in HA infections at the end of the second/beginning of the third wave despite high community transmissions. CONCLUSIONS: While epidemiologic analysis is critical for immediate containment of HA SARS-CoV-2 outbreaks, integration of genomic surveillance revealed weaknesses in identifying staff contacts. Our study underscores the importance of high testing frequency and genomic surveillance to detect, contain and prevent SARS-CoV-2-associated infections in healthcare settings.


Assuntos
COVID-19 , Infecção Hospitalar , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Filogenia , Centros de Atenção Terciária , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/prevenção & controle
3.
PLoS Pathog ; 17(2): e1009304, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33544760

RESUMO

S. epidermidis is a substantial component of the human skin microbiota, but also one of the major causes of nosocomial infection in the context of implanted medical devices. We here aimed to advance the understanding of S. epidermidis genotypes and phenotypes conducive to infection establishment. Furthermore, we investigate the adaptation of individual clonal lines to the infection lifestyle based on the detailed analysis of individual S. epidermidis populations of 23 patients suffering from prosthetic joint infection. Analysis of invasive and colonizing S. epidermidis provided evidence that invasive S. epidermidis are characterized by infection-supporting phenotypes (e.g. increased biofilm formation, growth in nutrient poor media and antibiotic resistance), as well as specific genetic traits. The discriminating gene loci were almost exclusively assigned to the mobilome. Here, in addition to IS256 and SCCmec, chromosomally integrated phages was identified for the first time. These phenotypic and genotypic features were more likely present in isolates belonging to sequence type (ST) 2. By comparing seven patient-matched nasal and invasive S. epidermidis isolates belonging to identical genetic lineages, infection-associated phenotypic and genotypic changes were documented. Besides increased biofilm production, the invasive isolates were characterized by better growth in nutrient-poor media and reduced hemolysis. By examining several colonies grown in parallel from each infection, evidence for genetic within-host population heterogeneity was obtained. Importantly, subpopulations carrying IS insertions in agrC, mutations in the acetate kinase (AckA) and deletions in the SCCmec element emerged in several infections. In summary, these results shed light on the multifactorial processes of infection adaptation and demonstrate how S. epidermidis is able to flexibly repurpose and edit factors important for colonization to facilitate survival in hostile infection environments.


Assuntos
Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Infecção Hospitalar/microbiologia , Mutação , Mucosa Nasal/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/genética , Idoso , Idoso de 80 Anos ou mais , Proteínas de Bactérias/metabolismo , Infecção Hospitalar/genética , Infecção Hospitalar/metabolismo , Feminino , Genótipo , Hemólise , Humanos , Sequências Repetitivas Dispersas , Masculino , Pessoa de Meia-Idade , Mucosa Nasal/metabolismo , Fenótipo , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/metabolismo , Staphylococcus epidermidis/classificação , Staphylococcus epidermidis/crescimento & desenvolvimento , Staphylococcus epidermidis/isolamento & purificação
4.
Mol Microbiol ; 103(5): 860-874, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27997732

RESUMO

The otherwise harmless skin inhabitant Staphylococcus epidermidis is a major cause of healthcare-associated medical device infections. The species' selective pathogenic potential depends on its production of surface adherent biofilms. The Cell wall-anchored protein Aap promotes biofilm formation in S. epidermidis, independently from the polysaccharide intercellular adhesin PIA. Aap requires proteolytic cleavage to act as an intercellular adhesin. Whether and which staphylococcal proteases account for Aap processing is yet unknown. Here, evidence is provided that in PIA-negative S. epidermidis 1457Δica, the metalloprotease SepA is required for Aap-dependent S. epidermidis biofilm formation in static and dynamic biofilm models. qRT-PCR and protease activity assays demonstrated that under standard growth conditions, sepA is repressed by the global regulator SarA. Inactivation of sarA increased SepA production, and in turn augmented biofilm formation. Genetic and biochemical analyses demonstrated that SepA-related induction of biofilm accumulation resulted from enhanced Aap processing. Studies using recombinant proteins demonstrated that SepA is able to cleave the A domain of Aap at residue 335 and between the A and B domains at residue 601. This study identifies the mechanism behind Aap-mediated biofilm maturation, and also demonstrates a novel role for a secreted staphylococcal protease as a requirement for the development of a biofilm.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Metaloendopeptidases/metabolismo , Processamento de Proteína Pós-Traducional , Staphylococcus epidermidis/enzimologia , Staphylococcus epidermidis/fisiologia , Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Polissacarídeos Bacterianos/metabolismo , Ligação Proteica , Staphylococcus epidermidis/química , Staphylococcus epidermidis/genética
5.
Acta Orthop ; 89(5): 580-584, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29947288

RESUMO

Background and purpose - Cutibacterium acnes, formerly known as Propionibacterium acnes, is often isolated from deep tissues of the shoulder. It is recognized as an important causative agent of foreign-material associated infections. However, the incidence and significance of its detection in tissues from patients without clinical evidence for infection is unclear. We assessed the incidence of C. acnes colonization of osteosynthesis material in asymptomatic patients, and evaluated the short-term outcome in relation to the microbiological findings. Patients and methods - We microbiologically analyzed osteosynthesis material of 34 asymptomatic patients after surgery on the clavicle. Material obtained from 19 asymptomatic patients after osteosynthesis of the fibula served as a control group. Patients were clinically followed up for 3-24 months after removal of the osteosynthesis material. Results - Bacteria were recovered from devices in 29 of 34 patients from the clavicle group. 27 of 29 positive samples grew C. acnes. Isolation of C. acnes was more common in male than in female patients. No bacterial growth was observed on foreign material from patients in the fibula group. All patients remained asymptomatic at follow-up. Interpretation - Growth of C. acnes is common on osteosynthesis material of the shoulder, especially in males. Samples were positive irrespective of clinical signs of infection. Therefore, detection of C. acnes in this clinical setting is of questionable clinical significance. The high positivity rate in asymptomatic patients discourages routine sampling of material in cases without clinical evidence for infection.


Assuntos
Placas Ósseas/microbiologia , Fixação Interna de Fraturas/instrumentação , Propionibacterium acnes/isolamento & purificação , Fraturas do Ombro/cirurgia , Articulação do Ombro/microbiologia , Adulto , Idoso , Parafusos Ósseos/microbiologia , Clavícula/lesões , Clavícula/cirurgia , Remoção de Dispositivo , Contaminação de Equipamentos , Feminino , Fíbula/lesões , Fíbula/cirurgia , Seguimentos , Fixação Interna de Fraturas/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Propionibacterium acnes/crescimento & desenvolvimento , Articulação do Ombro/cirurgia , Adulto Jovem
6.
J Antimicrob Chemother ; 72(9): 2483-2488, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28637339

RESUMO

Background: Avibactam is a novel broad-range ß-lactamase inhibitor active against Ambler class A (including ESBL and KPC) and some Ambler class C and D (e.g. OXA-48) enzymes. We here report on the emergence of ceftazidime/avibactam resistance in clinical, multiresistant, OXA-48 and CTX-M-14-producing Klebsiella pneumoniae isolate DT12 during ceftazidime/avibactam treatment. Methods and results: Comparative whole-genome sequence analysis identified two SNPs in the CTX-M-14-encoding gene leading to two amino acid changes (P170S and T264I). Compared with WT CTX-M-14, expression of the CTX-M-14Δ170Δ264 isoform in Escherichia coli led to a >64- and 16-fold increase in ceftazidime and ceftazidime/avibactam MICs, respectively, functionally linking the observed SNPs and elevated MICs. The mutated CTX-M-14 isoform exhibited augmented ceftazidime hydrolytic activity, which was a reasonable cause for impaired susceptibility to avibactam inhibition. The P170S exchange in CTX-M-14 was found in association with elevated ceftazidime/avibactam MICs for independent K. pneumoniae isolates, but was not sufficient for full resistance. Apparently, additional CTX-M-independent mechanisms contribute to ceftazidime/avibactam resistance in K. pneumoniae DT12. Conclusions: This study on the molecular basis of ceftazidime/avibactam resistance in clinical K. pneumoniae emerging in vivo underscores the need for continuous monitoring of ceftazidime/avibactam susceptibility during therapy. Despite sustained inhibition of OXA-48, rapid development of CTX-M-14 isoforms exhibiting augmented ceftazidime hydrolytic activity may limit the usefulness of ceftazidime/avibactam monotherapies in infections caused by isolates carrying blaCTX-M-14 and blaOXA-48.


Assuntos
Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Ceftazidima/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Compostos Azabicíclicos/administração & dosagem , Compostos Azabicíclicos/uso terapêutico , Ceftazidima/administração & dosagem , Ceftazidima/uso terapêutico , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/isolamento & purificação , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Inibidores de beta-Lactamases/farmacologia
7.
PLoS Pathog ; 11(3): e1004735, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25799153

RESUMO

Virulence of the nosocomial pathogen Staphylococcus epidermidis is crucially linked to formation of adherent biofilms on artificial surfaces. Biofilm assembly is significantly fostered by production of a bacteria derived extracellular matrix. However, the matrix composition, spatial organization, and relevance of specific molecular interactions for integration of bacterial cells into the multilayered biofilm community are not fully understood. Here we report on the function of novel 18 kDa Small basic protein (Sbp) that was isolated from S. epidermidis biofilm matrix preparations by an affinity chromatographic approach. Sbp accumulates within the biofilm matrix, being preferentially deposited at the biofilm-substratum interface. Analysis of Sbp-negative S. epidermidis mutants demonstrated the importance of Sbp for sustained colonization of abiotic surfaces, but also epithelial cells. In addition, Sbp promotes assembly of S. epidermidis cell aggregates and establishment of multilayered biofilms by influencing polysaccharide intercellular-adhesin (PIA) and accumulation associated protein (Aap) mediated intercellular aggregation. While inactivation of Sbp indirectly resulted in reduced PIA-synthesis and biofilm formation, Sbp serves as an essential ligand during Aap domain-B mediated biofilm accumulation. Our data support the conclusion that Sbp serves as an S. epidermidis biofilm scaffold protein that significantly contributes to key steps of surface colonization. Sbp-negative S. epidermidis mutants showed no attenuated virulence in a mouse catheter infection model. Nevertheless, the high prevalence of sbp in commensal and invasive S. epidermidis populations suggests that Sbp plays a significant role as a co-factor during both multi-factorial commensal colonization and infection of artificial surfaces.


Assuntos
Aderência Bacteriana/fisiologia , Biofilmes/crescimento & desenvolvimento , Proteínas Periplásmicas de Ligação/metabolismo , Staphylococcus epidermidis/fisiologia , Animais , Camundongos , Proteínas Periplásmicas de Ligação/genética
8.
Int J Med Microbiol ; 306(6): 471-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27292911

RESUMO

Biofilm-associated Staphylococcus epidermidis implant infections are notoriously reluctant to antibiotic treatment. Here we studied the effect of sub-inhibitory concentrations of penicillin, oxacillin, vancomycin, daptomycin, linezolid and tigecycline on S. epidermidis 1585 biofilm formation, expression of extracellular matrix binding protein (Embp) and potential implications for S. epidermidis - macrophage interactions. Penicillin, vancomycin, daptomycin, and linezolid had no biofilm augmenting effect at any of the concentrations tested. In contrast, at sub-inhibitory concentrations tigecycline and oxacillin exhibited significant biofilm inducing activity. In S. epidermidis 1585, SarA is a negative regulator of giant 1 MDa Embp, and down regulation of sarA induces Embp-dependent assembly of a multi-layered biofilm architecture. Dot blot immune assays, confocal laser scanning microscopy, and qPCR showed that under biofilm inducing conditions, tigecycline augmented embp expression compared to the control grown without antibiotics. Conversely, expression of regulator sarA was suppressed, suggesting that tigecycline exerts its effects on embp expression through SarA. Tigecycline failed to induce biofilm formation in embp transposon mutant 1585-M135, proving that under these conditions Embp up-regulation is necessary for biofilm accumulation. As a functional consequence, tigecycline induced biofilm formation significantly impaired the up-take of S. epidermidis by mouse macrophage-like cell line J774A.1. Our data provide novel evidence for the molecular basis of antibiotic induced biofilm formation, a phenotype associated with inherently increased antimicrobial tolerance. While this could explain failure of antimicrobial therapies, persistence of S. epidermidis infections in the presence of sub-inhibitory antimicrobials is additionally propelled by biofilm-related impairment of macrophage-mediated pathogen eradication.


Assuntos
Antibacterianos/metabolismo , Proteínas de Bactérias/biossíntese , Biofilmes/crescimento & desenvolvimento , Proteínas de Transporte/biossíntese , Evasão da Resposta Imune , Minociclina/análogos & derivados , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Immunoblotting , Macrófagos/microbiologia , Camundongos , Microscopia Confocal , Minociclina/metabolismo , Fagocitose , Reação em Cadeia da Polimerase em Tempo Real , Staphylococcus epidermidis/imunologia , Staphylococcus epidermidis/metabolismo , Tigeciclina , Transativadores/biossíntese , Transativadores/genética
9.
Infect Immun ; 83(1): 214-26, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25332125

RESUMO

Biofilm formation is the primary virulence factor of Staphylococcus epidermidis. S. epidermidis biofilms preferentially form on abiotic surfaces and may contain multiple matrix components, including proteins such as accumulation-associated protein (Aap). Following proteolytic cleavage of the A domain, which has been shown to enhance binding to host cells, B domain homotypic interactions support cell accumulation and biofilm formation. To further define the contribution of Aap to biofilm formation and infection, we constructed an aap allelic replacement mutant and an icaADBC aap double mutant. When subjected to fluid shear, strains deficient in Aap production produced significantly less biofilm than Aap-positive strains. To examine the in vivo relevance of our findings, we modified our previously described rat jugular catheter model and validated the importance of immunosuppression and the presence of a foreign body to the establishment of infection. The use of our allelic replacement mutants in the model revealed a significant decrease in bacterial recovery from the catheter and the blood in the absence of Aap, regardless of the production of polysaccharide intercellular adhesin (PIA), a well-characterized, robust matrix molecule. Complementation of the aap mutant with full-length Aap (containing the A domain), but not the B domain alone, increased initial attachment to microtiter plates, as did in trans expression of the A domain in adhesion-deficient Staphylococcus carnosus. These results demonstrate Aap contributes to S. epidermidis infection, which may in part be due to A domain-mediated attachment to abiotic surfaces.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Infecções Relacionadas a Cateter/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/fisiologia , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Modelos Animais de Doenças , Deleção de Genes , Teste de Complementação Genética , Masculino , Dados de Sequência Molecular , Ratos Sprague-Dawley , Análise de Sequência de DNA , Staphylococcus epidermidis/metabolismo , Fatores de Virulência/genética
10.
Int J Med Microbiol ; 305(8): 902-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26454536

RESUMO

Infections due to vancomycin-resistant enterococci (VRE) are of significant importance in high-risk populations, and daptomycin is a bactericidal antibiotic to treat multidrug-resistant VRE in these patients. The emergence of daptomycin non-susceptibility invasive VRE during daptomycin therapy is a major clinical issue. Here the hypothesis was tested that systemic daptomycin therapy also induces the emergence of daptomycin non-susceptible (DNS-) isolates in colonizing VRE populations. 11 vancomycin-resistant Enterococcus faecium strain pairs recovered from rectal swabs were available for analysis. All initial isolates exhibited daptomycin MICs within the wild type MIC distribution of E. faecium (MIC≤4 mg/L). In follow-up isolates from five patients a 4-16-fold daptomycin MIC increase was detected. All patients carrying DNS-VRE received daptomycin (14-28 days) at 4 mg/kg body weight, while two patients in whom no DNS-VRE emerged were only treated with daptomycin for 1 and 4 days, respectively. Comparative whole genome sequencing identified DNS-VRE-specific single nucleotide polymorphisms (SNP), including mutations in cardiolipin synthase (Cls), and additional SNPs in independent genes potentially relevant for the DNS phenotype. Mutations within cls were also identified in three additional, colonizing DNS-VRE. Of these, at least one strain was transmitted within the hospital. In none of the VRE isolates tested, pre-existing or de novo mutations in the liaFSR operon were detected. This is the first report documenting the emergence of DNS-VRE in colonizing strains during daptomycin treatment, putting the patient at risk for subsequent DNS-VRE infections and priming the spread of DNS-VRE within the hospital environment.


Assuntos
Antibacterianos/farmacologia , Daptomicina/farmacologia , Tolerância a Medicamentos , Enterococcus faecium/efeitos dos fármacos , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Antibacterianos/uso terapêutico , DNA Bacteriano/química , DNA Bacteriano/genética , Daptomicina/uso terapêutico , Enterococcus faecium/isolamento & purificação , Fezes/microbiologia , Genoma Bacteriano , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Polimorfismo de Nucleotídeo Único , Enterococos Resistentes à Vancomicina/isolamento & purificação
11.
J Bacteriol ; 196(19): 3482-93, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25070736

RESUMO

Staphylococcus epidermidis is an opportunistic pathogen that is one of the leading causes of medical device infections. Global regulators like the agr quorum-sensing system in this pathogen have received a limited amount of attention, leaving important questions unanswered. There are three agr types in S. epidermidis strains, but only one of the autoinducing peptide (AIP) signals has been identified (AIP-I), and cross talk between agr systems has not been tested. We structurally characterized all three AIP types using mass spectrometry and discovered that the AIP-II and AIP-III signals are 12 residues in length, making them the largest staphylococcal AIPs identified to date. S. epidermidis agr reporter strains were developed for each system, and we determined that cross-inhibitory interactions occur between the agr type I and II systems and between the agr type I and III systems. In contrast, no cross talk was observed between the type II and III systems. To further understand the outputs of the S. epidermidis agr system, an RNAIII mutant was constructed, and microarray studies revealed that exoenzymes (Ecp protease and Geh lipase) and low-molecular-weight toxins were downregulated in the mutant. Follow-up analysis of Ecp confirmed the RNAIII is required to induce protease activity and that agr cross talk modulates Ecp activity in a manner that mirrors the agr reporter results. Finally, we demonstrated that the agr system enhances skin colonization by S. epidermidis using a porcine model. This work expands our knowledge of S. epidermidis agr system function and will aid future studies on cell-cell communication in this important opportunistic pathogen.


Assuntos
Proteínas de Bactérias/metabolismo , Peptídeos Cíclicos/metabolismo , Percepção de Quorum , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/fisiologia , Animais , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Peptídeos Cíclicos/genética , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/crescimento & desenvolvimento , Suínos
12.
Mol Microbiol ; 86(2): 394-410, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22957858

RESUMO

Biofilm formation is essential for Staphylococcus epidermidis pathogenicity in implant-associated infections. Nonetheless, large proportions of invasive Staphylococcus epidermidis isolates fail to form a biofilm in vitro. We here tested the hypothesis that this apparent paradox is related to the existence of superimposed regulatory systems suppressing a multicellular biofilm life style in vitro. Transposon mutagenesis of clinical significant but biofilm-negative S. epidermidis 1585 was used to isolate a biofilm positive mutant carrying a Tn917 insertion in sarA, chief regulator of staphylococcal virulence. Genetic analysis revealed that inactivation of sarA induced biofilm formation via overexpression of the giant 1 MDa extracellular matrix binding protein (Embp), serving as an intercellular adhesin. In addition to Embp, increased extracellular DNA (eDNA) release significantly contributed to biofilm formation in mutant 1585ΔsarA. Increased eDNA amounts indirectly resulted from upregulation of metalloprotease SepA, leading to boosted processing of autolysin AtlE, in turn inducing augmented autolysis and release of eDNA. Hence, this study identifies sarA as a negative regulator of Embp- and eDNA-dependent biofilm formation. Given the importance of SarA as a positive regulator of polysaccharide mediated cell aggregation, the regulator enables S. epidermidis to switch between mechanisms of biofilm formation, ensuring S. epidermidis adaptation to hostile environments.


Assuntos
Adesinas Bacterianas/genética , Proteínas de Bactérias/metabolismo , Bacteriólise , Biofilmes , DNA Bacteriano/metabolismo , Regulação para Baixo , Regulação Bacteriana da Expressão Gênica , Staphylococcus epidermidis/fisiologia , Transativadores/metabolismo , Adesinas Bacterianas/metabolismo , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Humanos , Staphylococcus epidermidis/genética , Transativadores/genética
13.
Microbiol Resour Announc ; 12(10): e0043823, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37655888

RESUMO

Here, we describe the complete genome sequence of a Staphylococcus condimenti blood culture isolate from a catheter-related bloodstream infection in a male patient.

14.
J Infect Public Health ; 16(8): 1142-1148, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37267681

RESUMO

BACKGROUND: Worldwide observations revealed increased frequencies of multi-resistant Enterobacterales and resistance genes in hospital wastewater compared to any other type of wastewater. Despite the description of clonal lineages possibly adapted to hospital wastewater, little is known about long term persistence as well as evolution of these lineages. METHODS: In this study, wastewater isolates of different Enterobacterales species from a tertiary care hospital were investigated with 2.5 years distance. Whole Genome Sequencing (WGS) and resistance gene identification were performed for E. coli, C. freundii, S. marcescens, K. pneumoniae, K. oxytoca, and E. cloacae isolates (n = 59), isolated in 2022 and compared with strains isolated from the same wastewater pipeline in 2019 (n = 240). RESULTS: Individual clonal lineages with highly related isolates could be identified in all species identified more than once in 2022 that appear to persist in the wastewater drainage. A common motif of all persistent clonal lineages was the carriage of mobile genetic elements encoding carbapenemase genes with hints for horizontal gene transfer in persistent clones in this environment observed over the 2.5-year period. Multiple plasmid replicons could be detected in both years. In 2022 isolates blaVIM-1 replaced blaOXA-48 as the most common carbapenemase gene compared to 2019. Interestingly, despite a similar abundance of carbapenemase genes (>80% of all isolates) at both time points genes encoding extended spectrum ß-lactamases decreased over time. CONCLUSIONS: This data indicates that hospital wastewater continuously releases genes encoding carbapenemases to the urban wastewater system. The evolution of the resident clones as well as the reasons for the selection advantage in this specific ecological niche needs to be further investigated in the future.


Assuntos
Escherichia coli , Águas Residuárias , Humanos , Centros de Atenção Terciária , Proteínas de Bactérias/genética , beta-Lactamases/genética , Klebsiella pneumoniae/genética , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
15.
Microorganisms ; 11(5)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37317306

RESUMO

Pigmentation, catalase activity and biofilm formation are virulence factors that cause resistance of Staphylococcus aureus to environmental stress factors including disinfectants. In recent years, automatic UV-C room disinfection gained greater importance in enhanced disinfection procedures to improve disinfection success in hospitals. In this study, we evaluated the effect of naturally occurring variations in the expression of virulence factors in clinical S. aureus isolates on tolerance against UV-C radiation. Quantification of staphyloxanthin expression, catalase activity and biofilm formation for nine genetically different clinical S. aureus isolates as well as reference strain S. aureus ATCC 6538 were performed using methanol extraction, a visual approach assay and a biofilm assay, respectively. Log10 reduction values (LRV) were determined after irradiation of artificially contaminated ceramic tiles with 50 and 22 mJ/cm2 UV-C using a commercial UV-C disinfection robot. A wide variety of virulence factor expression was observed, indicating differential regulation of global regulatory networks. However, no direct correlation with the strength of expression with UV-C tolerance was observed for either staphyloxanthin expression, catalase activity or biofilm formation. All isolates were effectively reduced with LRVs of 4.75 to 5.94. UV-C disinfection seems therefore effective against a wide spectrum of S. aureus strains independent of occurring variations in the expression of the investigated virulence factors. Due to only minor differences, the results of frequently used reference strains seem to be representative also for clinical isolates in S. aureus.

16.
Artigo em Inglês | MEDLINE | ID: mdl-35564977

RESUMO

OBJECTIVE: In this study, the in-vivo effect of an antiseptic mouth rinse with Octenisept plus phenoxyethanol (OCT + PE) on the oral SARS-CoV-2 load was investigated. MATERIAL AND METHODS: In eight COVID-19 patients, saliva samples were obtained before mouth rinsing and at five time points post rinsing with OCT + PE (n = 47 saliva samples in total). SARS-CoV-2 RNA was detected and quantified by RT-qPCR and virus isolation in cell culture was performed to assess for infectivity. RESULTS: Immediately after mouth rinsing (1 min), a significant reduction of the SARS-CoV-2 RNA loads in saliva was achieved (p = 0.03) with 7/8 participants having SARS-CoV-2 RNA levels undetectable by RT-qPCR. At later time points, RNA levels returned to baseline levels in all study participants. Infectivity of saliva samples was demonstrated by successful virus isolation from saliva samples collected at later time points. CONCLUSIONS: This study highlights that saliva samples from COVID-19 patients are infectious and demonstrates that mouth rinsing with OCT + PE temporarily leads to a significant reduction of the SARS-CoV-2 load in saliva. CLINICAL RELEVANCE: Mouth rinsing with OCT + PE could provide a simple, rapid, and efficient method for SARS-CoV-2 infection prevention, particularly in the field of dental and respiratory medicine.


Assuntos
COVID-19 , SARS-CoV-2 , Combinação de Medicamentos , Etilenoglicóis , Humanos , Iminas , Antissépticos Bucais/uso terapêutico , Piridinas , RNA Viral/genética , Saliva
17.
Int J Hyg Environ Health ; 242: 113968, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35390565

RESUMO

Hospitals are one of the main reservoirs of multi-resistant Enterobacterales (MRE). As MRE are resistant to the most frequently used antibiotics, therapy for patients with MRE infections is challenging. It has been previously described that MRE from hospital wastewater can pass into municipal wastewater and even surface water. In this study, we investigated the diversity and epidemiology of MRE in the wastewater of a large tertiary care hospital. Wastewater samples were collected for a four-day period and tested for the presence of Enterobacterales resistant to 3rd gen. cephalosporins. Representative isolates were further characterized by whole genome sequencing. In 120 ß-glucuronidase-producing isolates, 68 Escherichia coli and, interestingly, also 52 Citrobacter freundii were identified. In 120 ß-glucosidase-producing isolates 45 Serratia marcescens, 34 Klebsiella oxytoca, 32 Enterobacter cloacae and 9 Klebsiella pneumoniae were observed. For all species various MLST sequence types and different clusters of resistance genes were determined, showing a great diversity within the different Enterobacterales, further corroborated by clonal analysis performed by cgMLST. The most prominent clone was wastewater associated E. coli ST635, which accounted for 47.1% of all E. coli isolates. Interestingly, 45.6% of E. coli, 88.5% of C. freundii, 95.6% of S. marcescens, 91.2% of K. oxytoca, 96.9% of E. cloacae and 88.9% of K. pneumoniae isolates carried a carbapenemase gene, indicating a high burden with carbapenemase-producing Enterobacterales. Comparison with clinical isolates from the same hospital displayed few clonal matches. One wastewater isolate of K. pneumoniae was identified to be closely related compared to a clone that had been introduced into the hospital during an outbreak four years earlier. One E. coli isolate was identified as identical to an isolate from a patient, with inpatient stay during the sampling period. The data obtained in this study highlight the problem of antibiotic resistance of Enterobacterales in hospital wastewater. In particular, the clustered occurrence of carbapenemase genes is of great concern and underscores the problem of increasingly scarce antibiotic options against these bacteria.


Assuntos
Escherichia coli , Águas Residuárias , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Escherichia coli/genética , Humanos , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Centros de Atenção Terciária , beta-Lactamases
18.
Elife ; 112022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35796649

RESUMO

Staphylococcus epidermidis causes some of the most hard-to-treat clinical infections by forming biofilms: Multicellular communities of bacteria encased in a protective matrix, supporting immune evasion and tolerance against antibiotics. Biofilms occur most commonly on medical implants, and a key event in implant colonization is the robust adherence to the surface, facilitated by interactions between bacterial surface proteins and host matrix components. S. epidermidis is equipped with a giant adhesive protein, extracellular matrix-binding protein (Embp), which facilitates bacterial interactions with surface-deposited, but not soluble fibronectin. The structural basis behind this selective binding process has remained obscure. Using a suite of single-cell and single-molecule analysis techniques, we show that S. epidermidis is capable of such distinction because Embp binds specifically to fibrillated fibronectin on surfaces, while ignoring globular fibronectin in solution. S. epidermidis adherence is critically dependent on multivalent interactions involving 50 fibronectin-binding repeats of Embp. This unusual, Velcro-like interaction proved critical for colonization of surfaces under high flow, making this newly identified attachment mechanism particularly relevant for colonization of intravascular devices, such as prosthetic heart valves or vascular grafts. Other biofilm-forming pathogens, such as Staphylococcus aureus, express homologs of Embp and likely deploy the same mechanism for surface colonization. Our results may open for a novel direction in efforts to combat devastating, biofilm-associated infections, as the development of implant materials that steer the conformation of adsorbed proteins is a much more manageable task than avoiding protein adsorption altogether.


A usually harmless bacterium called Staphylococcus epidermidis lives on human skin. Sometimes it makes its way into the bloodstream through a cut or surgical procedure, but it rarely causes blood infections. It can, however, cause severe infections when it attaches to the surface of a medical implant like a pacemaker or an artificial replacement joint. It does this by forming a colony of bacteria on the implant's surface called a biofilm, which protects the bacteria from destruction by the immune system or antibiotics. Understanding how Staphylococcus epidermidis implant infections start is critical to preventing them. This information may help scientists develop infection-resistant implants or new treatments for implant infections. Scientists suspect that Staphylococcus epidermidis attaches to implants by binding to a human protein called fibronectin, which coats medical implants in the human body. Another protein on the surface of the bacteria, called Embp, facilitates the connection. But why the bacteria attach to fibronectin on implants, and not fibronectin molecules in the bloodstream, is unclear. Now, Khan, Aslan et al. show that Embp forms a Velcro-like bond with fibronectin on the surface of implants. In the experiments, Khan and Aslan et al. used powerful microscopes to create 3-dimensional images of the interactions between Embp and fibronectin. The experiments showed that Embp's attachment site is hidden on the globe-shaped form of fibronectin circulating in the blood. But when fibronectin covers an implant surface, it forms a fibrous network, and Embp can attach to it with up to 50 Velcro-like individual connections. These many weak connections form a strong bond that withstands the force of blood pumping past. The experiments show that the fibrous coating of fibronectin on implants makes them a hotspot for Staphylococcus epidermidis infections. Finding ways to block Embp from attaching to fibronectin on implants, or altering the form fibronectin takes on implants, may help prevent these infections. Many bacteria that form biofilms have an Embp-like protein. As a result, these discoveries may also help scientists develop prevention or treatment strategies for other bacterial biofilm infections.


Assuntos
Proteínas de Transporte , Infecções Estafilocócicas , Proteínas de Bactérias/metabolismo , Biofilmes , Proteínas de Transporte/metabolismo , Fibronectinas/metabolismo , Humanos , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis
19.
Front Cell Infect Microbiol ; 12: 948151, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967857

RESUMO

Staphylococcus epidermidis is a major causative agent of prosthetic joint infections (PJI). The ability to form biofilms supports this highly selective pathogenic potential. In vitro studies essentially relying on phenotypic assays and genetic approaches have provided a detailed picture of the molecular events contributing to biofilm assembly. A major limitation in these studies is the use of synthetic growth media, which significantly differs from the environmental conditions S. epidermidis encounters during host invasion. Building on evidence showing that growth in serum substantially affects S. epidermidis gene expression profiles and phenotypes, the major aim of this study was to develop and characterize a growth medium mimicking synovial fluid, thereby facilitating research addressing specific aspects related to PJI. Using fresh human plasma, a protocol was established allowing for the large-scale production of a medium that by biochemical analysis matches key characteristics of synovial fluid and therefore is referred to as artificial synovial fluid (ASF). By analysis of biofilm-positive, polysaccharide intercellular adhesion (PIA)-producing S. epidermidis 1457 and its isogenic, PIA- and biofilm-negative mutant 1457-M10, evidence is provided that the presence of ASF induces cluster formation in S. epidermidis 1457 and mutant 1457-M10. Consistent with the aggregative properties, both strains formed multilayered biofilms when analyzed by confocal laser scanning microscopy. In parallel to the phenotypic findings, expression analysis after growth in ASF found upregulation of genes encoding for intercellular adhesins (icaA, aap, and embp) as well as atlE, encoding for the major cell wall autolysin being responsible for eDNA release. In contrast, growth in ASF was associated with reduced expression of the master regulator agr. Collectively, these results indicate that ASF induces expression profiles that are able to support intercellular adhesion in both PIA-positive and PIA-negative S. epidermidis. Given the observation that ASF overall induced biofilm formation in a collection of S. epidermidis isolates from PJI, the results strongly support the idea of using growth media mimicking host environments. ASF may play an important role in future studies related to the pathogenesis of S. epidermidis PJI.


Assuntos
Staphylococcus epidermidis , Líquido Sinovial , Adesinas Bacterianas/metabolismo , Biofilmes , Humanos , Polissacarídeos Bacterianos/metabolismo , Staphylococcus epidermidis/genética , Líquido Sinovial/metabolismo
20.
J Med Microbiol ; 70(3)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33492206

RESUMO

Introduction. Staphylococcus epidermidis is predominant in implant-associated infections due to its capability to form biofilms. It can deploy several strategies for biofilm development using either polysaccharide intercellular adhesin (PIA), extracellular DNA (eDNA) and/or proteins, such as the extracellular matrix-binding protein (Embp).Hypothesis/Gap Statement. We hypothesize that the dichotomic regulation of S. epidermidis adhesins is linked to whether it is inside a host or not, and that in vitro biofilm investigations in laboratory media may not reflect actual biofilms in vivo.Aim. We address the importance of PIA and Embp in biofilm grown in 'humanized' media to understand if these components play different roles in biofilm formation under conditions where bacteria can incorporate host proteins in the biofilm matrix.Methodology. S. epidermidis 1585 WT (deficient in icaADBC), and derivative strains that either lack embp, express embp from an inducible promotor, or express icaADBC from a plasmid, were cultivated in standard laboratory media, or in media with human plasma or serum. The amount, structure, elasticity and antimicrobial penetration of biofilms was quantified to describe structural differences caused by the different matrix components and growth conditions. Finally, we quantified the initiation of biofilms as suspended aggregates in response to host factors to determine how quickly the cells aggregate in response to the host environment and reach a size that protects them from phagocytosis.Results. S. epidermidis 1585 required polysaccharides to form biofilm in laboratory media. However, these observations were not representative of the biofilm phenotype in the presence of human plasma. If human plasma were present, polysaccharides and Embp were redundant for biofilm formation. Biofilms formed in human plasma were loosely attached and existed mostly as suspended aggregates. Aggregation occurred after 2 h of exposing cells to plasma or serum. Despite stark differences in the amount and composition of biofilms formed by polysaccharide-producing and Embp-producing strains in different media, there were no differences in vancomycin penetration or susceptibility.Conclusion. We suggest that the assumed importance of polysaccharides for biofilm formation is an artefact from studying biofilms in laboratory media void of human matrix components. The cell-cell aggregation of S. epidermidis can be activated by host factors without relying on either of the major adhesins, PIA and Embp, indicating a need to revisit the basic question of how S. epidermidis deploys self-produced and host-derived matrix components to form antibiotic-tolerant biofilms in vivo.


Assuntos
Adesinas Bacterianas/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Polissacarídeos Bacterianos/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/fisiologia , Aderência Bacteriana , Regulação Bacteriana da Expressão Gênica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA