Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Immunity ; 56(7): 1578-1595.e8, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37329888

RESUMO

It is currently not well known how necroptosis and necroptosis responses manifest in vivo. Here, we uncovered a molecular switch facilitating reprogramming between two alternative modes of necroptosis signaling in hepatocytes, fundamentally affecting immune responses and hepatocarcinogenesis. Concomitant necrosome and NF-κB activation in hepatocytes, which physiologically express low concentrations of receptor-interacting kinase 3 (RIPK3), did not lead to immediate cell death but forced them into a prolonged "sublethal" state with leaky membranes, functioning as secretory cells that released specific chemokines including CCL20 and MCP-1. This triggered hepatic cell proliferation as well as activation of procarcinogenic monocyte-derived macrophage cell clusters, contributing to hepatocarcinogenesis. In contrast, necrosome activation in hepatocytes with inactive NF-κB-signaling caused an accelerated execution of necroptosis, limiting alarmin release, and thereby preventing inflammation and hepatocarcinogenesis. Consistently, intratumoral NF-κB-necroptosis signatures were associated with poor prognosis in human hepatocarcinogenesis. Therefore, pharmacological reprogramming between these distinct forms of necroptosis may represent a promising strategy against hepatocellular carcinoma.


Assuntos
Neoplasias Hepáticas , NF-kappa B , Humanos , NF-kappa B/metabolismo , Proteínas Quinases/metabolismo , Necroptose , Inflamação/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Apoptose
2.
Small ; 17(15): e2004223, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33458953

RESUMO

With the rising interest in the effects of orally ingested engineered nanomaterials (ENMs), much effort is undertaken to develop and advance intestinal in vitro models. The cytotoxic, proinflammatory, and DNA damaging properties of polyvinylpyrrolidone-capped silver (Ag-PVP) and titanium dioxide (TiO2 , P25) ENM in four in vitro models of increasing complexity-from proliferating Caco-2 and HT29-MTX-E12 monocultures to long-term transwell triple cultures including THP-1 macrophages to reproduce the human intestine in healthy versus inflamed-like state-are studied. Results are compared against in vivo effects of the same ENM through intestinal tissue analysis from 28-day oral exposure studies in mice. Adverse responses are only observed in monocultures and suggest toxic potential for both ENM, typically showing stronger effects for Ag-PVP than for TiO2 . By contrast, no adverse effects are observed in either the transwell cultures or the analyzed murine tissues. The data provide further support that monoculture models represent a cost and time efficient tool for early-phase hazard assessment. However, the observed similarities in morphology and ENM effects in murine intestinal tissue and the in vitro triple culture model suggest that advanced multifacetted research questions concerning oral ENM exposure are more adequately addressed by the more complex and time intensive models.


Assuntos
Nanoestruturas , Prata , Animais , Células CACO-2 , Humanos , Intestinos , Camundongos , Prata/toxicidade , Titânio/toxicidade
3.
Small ; 17(15): e2004630, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33475244

RESUMO

Would an engineered nanomaterial (ENM) still have the same identity once it reaches a secondary target tissue after a journey through several physiological compartments? Probably not. Does it matter? ENM pre-treatments may enhance the physiological relevance of in vitro testing via controlled transformation of the ENM identity. The implications of material transformation upon reactivity, cytotoxicity, inflammatory, and genotoxic potential of Ag and SiO2 ENM on advanced gastro-intestinal tract cell cultures and 3D liver spheroids are demonstrated. Pre-treatments are recommended for certain ENM only.


Assuntos
Nanoestruturas , Dióxido de Silício , Técnicas In Vitro , Fígado
4.
Nanomaterials (Basel) ; 11(10)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34685068

RESUMO

The increasing use of engineered nanomaterials (ENM) in food has fueled the development of intestinal in vitro models for toxicity testing. However, ENM effects on intestinal mucus have barely been addressed, although its crucial role for intestinal health is evident. We investigated the effects of ENM on mucin expression and aimed to evaluate the suitability of four in vitro models of increasing complexity compared to a mouse model exposed through feed pellets. We assessed the gene expression of the mucins MUC1, MUC2, MUC5AC, MUC13 and MUC20 and the chemokine interleukin-8 in pre-confluent and confluent HT29-MTX-E12 cells, in stable and inflamed triple cultures of Caco-2, HT29-MTX-E12 and THP-1 cells, and in the ileum of mice following exposure to TiO2, Ag, CeO2 or SiO2. All ENM had shared and specific effects. CeO2 downregulated MUC1 in confluent E12 cells and in mice. Ag induced downregulation of Muc2 in mice. Overall, the in vivo data were consistent with the findings in the stable triple cultures and the confluent HT29-MTX-E12 cells but not in pre-confluent cells, indicating the higher relevance of advanced models for hazard assessment. The effects on MUC1 and MUC2 suggest that specific ENM may lead to an elevated susceptibility towards intestinal infections and inflammations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA