Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Analyst ; 138(1): 362-7, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23154514

RESUMO

Perovskite-type oxide LaNiO(3) nanofibers (LNFs) have been successfully synthesized by electrospinning and sequential calcinations. The electrospun LNFs modified carbon paste electrode was used to construct a nonenzymatic hydrogen peroxide (H(2)O(2)) sensor and glucose biosensor for the first time. The LNFs composition was verified by X-ray diffraction, and the morphologies were examined by scanning electron microscopy and transmission electron microscopy. Cyclic voltammetry and amperometry were used to evaluate the catalytic activity of the LNFs modified electrode towards H(2)O(2) and glucose. By using LNFs as electrocatalysts, the modified electrode showed high electrocatalytic activity for the oxidation of H(2)O(2) and glucose. Under the optimized conditions, the H(2)O(2) sensor exhibited a low detection limit down to 33.9 nM with a wide linear range from 0.05 to 1000 µM. The nonenzymatic sensor also showed fast response, long-term stability as well as a low detection limit for glucose.

2.
Anal Chim Acta ; 752: 94-100, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-23101657

RESUMO

In this work, a poly(alizarin red)/Graphene composite film modified glassy carbon electrode (PAR/Graphene/GCE) was prepared for simultaneous determination of four DNA bases (guanine, adenine, thymine and cytosine) without any pretreatment. The morphology and interface property of PAR/Graphene films were examined by scanning electron microscopy and electrochemical impedance spectroscopy. The PAR/Graphene/GCE exhibited excellent electrocatalytic activity toward purine (guanine and adenine) and pyrimidine (thymine and cytosine) in 0.1 M phosphate buffer solution (pH 7.4). Under optimum conditions, differential pulse voltammetry was used to detect the oxidation of purine and pyrimidine. The results showed that PAR/Graphene/GCE exhibited well-separated peaks, low detection limit, high sensitivity and wide linear range for simultaneous detection of purine and pyrimidine. The proposed sensor also has good stability and reproducibility. Furthermore, the modified electrode was applied for the detection of DNA bases in a fish sperm DNA sample with satisfactory results.


Assuntos
Antraquinonas/química , Carbono/química , Grafite/química , Polímeros/química , Purinas/análise , Pirimidinas/análise , Eletrodos , Vidro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA