Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 317(1): E158-E171, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31039010

RESUMO

Gut microbiota is involved in the development of several chronic diseases, including diabetes, obesity, and cancer, through its interactions with the host organs. It has been suggested that the cross talk between gut microbiota and skeletal muscle plays a role in different pathological conditions, such as intestinal chronic inflammation and cachexia. However, it remains unclear whether gut microbiota directly influences skeletal muscle function. In this work, we studied the impact of gut microbiota modulation on mice skeletal muscle function and investigated the underlying mechanisms. We determined the consequences of gut microbiota depletion after treatment with a mixture of a broad spectrum of antibiotics for 21 days and after 10 days of natural reseeding. We found that, in gut microbiota-depleted mice, running endurance was decreased, as well as the extensor digitorum longus muscle fatigue index in an ex vivo contractile test. Importantly, the muscle endurance capacity was efficiently normalized by natural reseeding. These endurance changes were not related to variation in muscle mass, fiber typology, or mitochondrial function. However, several pertinent glucose metabolism markers, such as ileum gene expression of short fatty acid chain and glucose transporters G protein-coupled receptor 41 and sodium-glucose cotransporter 1 and muscle glycogen level, paralleled the muscle endurance changes observed after treatment with antibiotics for 21 days and reseeding. Because glycogen is a key energetic substrate for prolonged exercise, modulating its muscle availability via gut microbiota represents one potent mechanism that can contribute to the gut microbiota-skeletal muscle axis. Taken together, our results strongly support the hypothesis that gut bacteria are required for host optimal skeletal muscle function.


Assuntos
Metabolismo Energético/fisiologia , Microbioma Gastrointestinal/fisiologia , Glucose/metabolismo , Músculo Esquelético/fisiologia , Animais , Antibacterianos/farmacologia , Disbiose/induzido quimicamente , Disbiose/metabolismo , Disbiose/microbiologia , Disbiose/fisiopatologia , Metabolismo Energético/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Glicogênio/metabolismo , Homeostase/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Esquelético/efeitos dos fármacos
2.
Biochem Biophys Res Commun ; 516(1): 89-95, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31200956

RESUMO

Myostatin (Mstn) inactivation or inhibition is considered as a promising treatment for various muscle-wasting disorders because it promotes muscle growth. However, myostatin-deficient hypertrophic muscles show strong fatigability associated with abnormal mitochondria and lipid metabolism. Here, we investigated whether endurance training could improve lipid metabolism and mitochondrial membrane lipid composition in mice where the Mstn gene was genetically ablated (Mstn-/- mice). In Mstn-/- mice, 4 weeks of daily running exercise sessions (65-70% of the maximal aerobic speed for 1 h) improved significantly aerobic performance, particularly the endurance capacity (up to +280% compared with untrained Mstn-/- mice), to levels comparable to those of trained wild type (WT) littermates. The expression of oxidative and lipid metabolism markers also was increased, as indicated by the upregulation of the Cpt1, Ppar-δ and Fasn genes. Moreover, endurance training also increased, but far less than WT, citrate synthase level and mitochondrial protein content. Interestingly endurance training normalized the cardiolipin fraction in the mitochondrial membrane of Mstn-/- muscle compared with WT. These results suggest that the combination of myostatin inhibition and endurance training could increase the muscle mass while preserving the physical performance with specific effects on cardiolipin and lipid-related pathways.


Assuntos
Deleção de Genes , Metabolismo dos Lipídeos , Miostatina/genética , Animais , Lipidômica , Masculino , Camundongos , Camundongos Knockout , Miostatina/metabolismo , Condicionamento Físico Animal , Resistência Física , Corrida
3.
J Bioenerg Biomembr ; 50(2): 131-142, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29589261

RESUMO

Cardiolipin (CL) is a phospholipid at the heart of mitochondrial metabolism, which plays a key role in mitochondrial function and bioenergetics. Among mitochondrial activity regulators, SIRT3 plays a crucial role in controlling the acetylation status of many enzymes participating in the energy metabolism in particular concerning lipid metabolism and fatty acid oxidation. Data suggest that possible connection may exist between SIRT3 and CL status that has not been evaluated in skeletal muscle. In the present study, we have characterized skeletal muscle lipids as well as mitochondrial lipids composition in mice overexpressing long (SIRT3-M1) and short (SIRT3-M3) isoforms of SIRT3. Particular attention has been paid for CL. We reported no alteration in muscle lipids content and fatty acids composition between the two mice SIRT3 strains and the control mice. However, mitochondrial CL content was significantly decreased in SIRT3-M3 mice and associated to an upregulation of tafazzin gene expression. In addition, mitochondrial phospholipids and fatty acids composition was altered with an increase in the PC/PE ratio and arachidonic acid content and a reduction in the MUFA/SFA ratio. These modifications in mitochondrial membrane composition are associated with a reduction in the enzymatic activities of mitochondrial respiratory chain complexes I and IV. In spite of these mitochondrial enzymatic alterations, skeletal muscle mitochondrial respiration remained similar in SIRT3-M3 and control mice. Surprisingly, none of those metabolic alterations were detected in mitochondria from SIRT3-M1 mice. In conclusion, our data indicate a specific action of the shorter SIRT3 isoform on lipid mitochondrial membrane biosynthesis and functioning.


Assuntos
Cardiolipinas/metabolismo , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Sirtuína 3/fisiologia , Animais , Transporte de Elétrons , Camundongos , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , Fosfolipídeos/metabolismo , Isoformas de Proteínas
4.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(10 Pt A): 1044-1055, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28676454

RESUMO

Myostatin (Mstn) deficiency leads to skeletal muscle overgrowth and Mstn inhibition is considered as a promising treatment for muscle-wasting disorders. Mstn gene deletion in mice also causes metabolic changes with decreased mitochondria content, disturbance in mitochondrial respiratory function and increased muscle fatigability. However the impact of MSTN deficiency on these metabolic changes is not fully elucidated. Here, we hypothesized that lack of MSTN will alter skeletal muscle membrane lipid composition in relation with pronounced alterations in muscle function and metabolism. Indeed, phospholipids and in particular cardiolipin mostly present in the inner mitochondrial membrane, play a crucial role in mitochondria function and oxidative phosphorylation process. We observed that Mstn KO muscle had reduced fat membrane transporter levels (FAT/CD36, FABP3, FATP1 and FATP4) associated with decreased lipid oxidative pathway (citrate synthase and ß-HAD activities) and impaired lipogenesis (decreased triglyceride and free fatty acid content), indicating a role of mstn in muscle lipid metabolism. We further analyzed phospholipid classes and fatty acid composition by chromatographic methods in muscle and mitochondrial membranes. Mstn KO mice showed increased levels of saturated and polyunsaturated fatty acids at the expense of monounsaturated fatty acids. We also demonstrated, in this phenotype, a reduction in cardiolipin proportion in mitochondrial membrane versus the proportion of others phospholipids, in relation with a decrease in the expression of phosphatidylglycerolphosphate synthase and cardiolipin synthase, enzymes involved in cardiolipin synthesis. These data illustrate the importance of lipids as a link by which MSTN deficiency can impact mitochondrial bioenergetics in skeletal muscle.


Assuntos
Ácidos Graxos/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Miostatina/deficiência , 3-Hidroxiacil-CoA Desidrogenases/genética , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , Ácidos Graxos/genética , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/patologia , Músculo Esquelético/patologia , Oxirredução
5.
Intractable Rare Dis Res ; 10(4): 269-275, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34877239

RESUMO

Duchenne muscular dystrophy (DMD) is a recessive hereditary myopathy due to deficiency of functional dystrophin. Current therapeutic interventions need more investigation to slow down the progression of skeletal and cardiac muscle weakness. In humans, there is a lack of an adapted training program. In animals, the murine Mdx model with a DBA/2J background (D2-mdx) was recently suggested to present pathological features closer to that of humans. In this study, we characterized skeletal and cardiac muscle functions in males and females D2-mdx mice compared to control groups. We also evaluated the impact of high intensity interval training (HIIT) in these muscles in females and males. HIIT was performed 5 times per week during a month on a motorized treadmill. Specific maximal isometric force production and weakness were measured in the tibialis anterior muscle (TA). Sedentary male and female D2-mdx mice produced lower absolute and specific maximal force compared to control mice. Dystrophic mice showed a decline of force generation during repetitive stimulation compared to controls. This reduction was greater for male D2-mdx mice than females. Furthermore, trained D2-mdx males showed an improvement in force generation after the fifth lengthening contraction compared to sedentary D2-mdx males. Moreover, echocardiography measures revealed a decrease in left ventricular end-diastolic volume, left ventricular ejection volume and left ventricular end-diastolic diameter in sedentary male and female D2-mdx mice. Overall, our results showed a serious muscle function alteration in female and male D2-mdx mice compared to controls. HIIT may delay force loss especially in male D2-mdx mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA