Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 544(7650): 327-332, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28379944

RESUMO

The angiotensin II receptors AT1R and AT2R serve as key components of the renin-angiotensin-aldosterone system. AT1R has a central role in the regulation of blood pressure, but the function of AT2R is unclear and it has a variety of reported effects. To identify the mechanisms that underlie the differences in function and ligand selectivity between these receptors, here we report crystal structures of human AT2R bound to an AT2R-selective ligand and to an AT1R/AT2R dual ligand, capturing the receptor in an active-like conformation. Unexpectedly, helix VIII was found in a non-canonical position, stabilizing the active-like state, but at the same time preventing the recruitment of G proteins or ß-arrestins, in agreement with the lack of signalling responses in standard cellular assays. Structure-activity relationship, docking and mutagenesis studies revealed the crucial interactions for ligand binding and selectivity. Our results thus provide insights into the structural basis of the distinct functions of the angiotensin receptors, and may guide the design of new selective ligands.


Assuntos
Modelos Moleculares , Receptor Tipo 2 de Angiotensina/química , Receptor Tipo 2 de Angiotensina/metabolismo , Bloqueadores do Receptor Tipo 2 de Angiotensina II/química , Bloqueadores do Receptor Tipo 2 de Angiotensina II/metabolismo , Sítios de Ligação/genética , Cristalografia por Raios X , Desenho de Fármacos , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Ligantes , Simulação de Acoplamento Molecular , Mutação , Ligação Proteica , Conformação Proteica , Receptor Tipo 1 de Angiotensina/química , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/agonistas , Receptor Tipo 2 de Angiotensina/genética , Transdução de Sinais , Relação Estrutura-Atividade , Especificidade por Substrato/genética , beta-Arrestinas/metabolismo
2.
Bioorg Med Chem ; 27(3): 457-469, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30606676

RESUMO

The bromodomain and extra-terminal (BET) family of proteins, consisting of the bromodomains containing protein 2 (BRD2), BRD3, BRD4, and the testis-specific BRDT, are key epigenetic regulators of gene transcription and has emerged as an attractive target for anticancer therapy. Herein, we describe the discovery of a novel potent BET bromodomain inhibitor, using a systematic structure-based approach focused on improving potency, metabolic stability, and permeability. The optimized dimethylisoxazole aryl-benzimidazole inhibitor exhibited high potency towards BRD4 and related BET proteins in biochemical and cell-based assays and inhibited tumor growth in two proof-of-concept preclinical animal models.


Assuntos
Benzimidazóis/farmacologia , Descoberta de Drogas , Isoxazóis/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Fatores de Transcrição/antagonistas & inibidores , Administração Oral , Animais , Benzimidazóis/química , Benzimidazóis/metabolismo , Disponibilidade Biológica , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Isoxazóis/administração & dosagem , Isoxazóis/química , Isoxazóis/metabolismo , Camundongos , Estrutura Molecular , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Domínios Proteicos/efeitos dos fármacos , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo
3.
Bioorg Med Chem Lett ; 27(6): 1364-1370, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28216403

RESUMO

In an ongoing effort to explore the use of orexin receptor antagonists for the treatment of insomnia, dual orexin receptor antagonists (DORAs) were structurally modified, resulting in compounds selective for the OX2R subtype and culminating in the discovery of 23, a highly potent, OX2R-selective molecule that exhibited a promising in vivo profile. Further structural modification led to an unexpected restoration of OX1R antagonism. Herein, these changes are discussed and a rationale for selectivity based on computational modeling is proposed.


Assuntos
Antagonistas dos Receptores de Orexina/farmacologia , Orexinas/antagonistas & inibidores , Animais , Eletroencefalografia , Eletromiografia , Estrutura Molecular , Antagonistas dos Receptores de Orexina/química , Ratos
4.
J Chem Inf Model ; 57(6): 1276-1285, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28520421

RESUMO

The importance of engineering protein stability is well-known and has the potential to impact many fields ranging from pharmaceuticals to food sciences. Engineering proteins can be both a time-consuming and expensive experimental process. The use of computation is a potential solution to mitigating some of the time and expenses required to engineer a protein. This process has been previously hindered by inaccurate force fields or energy equations and slow computational processors; however, improved software and hardware have made this goal much more attainable. Here we find that Schrödinger's new FEP+, although still imperfect, proves more successful in predicting protein stability than other simpler methods of investigation. This increased accuracy comes at a cost of computational time and resources when compared to simpler methods. This work adds to the initial testing of FEP+ by offering options for more accurately predicting protein stability in an efficient manner.


Assuntos
Biologia Computacional/métodos , Estabilidade Proteica , Estudos de Viabilidade , Nuclease do Micrococo/química , Nuclease do Micrococo/genética , Nuclease do Micrococo/metabolismo , Modelos Moleculares , Mutação , Conformação Proteica , Termodinâmica
5.
Antimicrob Agents Chemother ; 58(1): 386-96, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24165192

RESUMO

One of the most challenging goals of hepatitis C virus (HCV) research is to develop well-tolerated regimens with high cure rates across a variety of patient populations. Such a regimen will likely require a combination of at least two distinct direct-acting antivirals (DAAs). Combining two or more DAAs with different resistance profiles increases the number of mutations required for viral breakthrough. Currently, most DAAs inhibit HCV replication. We recently reported that the combination of two distinct classes of HCV inhibitors, entry inhibitors and replication inhibitors, prolonged reductions in extracellular HCV in persistently infected cells. We therefore sought to identify new inhibitors targeting aspects of the HCV replication cycle other than RNA replication. We report here the discovery of the first small-molecule HCV infectivity inhibitor, GS-563253, also called HCV infectivity inhibitor 1 (HCV II-1). HCV II-1 is a substituted tetrahydroquinoline that selectively inhibits genotype 1 and 2 HCVs with low-nanomolar 50% effective concentrations. It was identified through a high-throughput screen and subsequent chemical optimization. HCV II-1 only permits the production and release of noninfectious HCV particles from cells. Moreover, infectious HCV is rapidly inactivated in its presence. HCV II-1 resistance mutations map to HCV E2. In addition, HCV-II prevents HCV endosomal fusion, suggesting that it either locks the viral envelope in its prefusion state or promotes a viral envelope conformation change incapable of fusion. Importantly, the discovery of HCV II-1 opens up a new class of HCV inhibitors that prolong viral suppression by HCV replication inhibitors in persistently infected cell cultures.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Antivirais/química , Linhagem Celular , Farmacorresistência Viral , Hepacivirus/metabolismo , Hepatite C/tratamento farmacológico , Humanos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
6.
Nat Microbiol ; 9(5): 1244-1255, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649414

RESUMO

Carbapenem-resistant Acinetobacter baumannii infections have limited treatment options. Synthesis, transport and placement of lipopolysaccharide or lipooligosaccharide (LOS) in the outer membrane of Gram-negative bacteria are important for bacterial virulence and survival. Here we describe the cerastecins, inhibitors of the A. baumannii transporter MsbA, an LOS flippase. These molecules are potent and bactericidal against A. baumannii, including clinical carbapenem-resistant Acinetobacter baumannii isolates. Using cryo-electron microscopy and biochemical analysis, we show that the cerastecins adopt a serpentine configuration in the central vault of the MsbA dimer, stalling the enzyme and uncoupling ATP hydrolysis from substrate flipping. A derivative with optimized potency and pharmacokinetic properties showed efficacy in murine models of bloodstream or pulmonary A. baumannii infection. While resistance development is inevitable, targeting a clinically unexploited mechanism avoids existing antibiotic resistance mechanisms. Although clinical validation of LOS transport remains undetermined, the cerastecins may open a path to narrow-spectrum treatment modalities for important nosocomial infections.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Proteínas de Bactérias , Lipopolissacarídeos , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/metabolismo , Lipopolissacarídeos/metabolismo , Animais , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/tratamento farmacológico , Camundongos , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Transporte Biológico , Testes de Sensibilidade Microbiana , Humanos , Microscopia Crioeletrônica , Carbapenêmicos/farmacologia , Carbapenêmicos/metabolismo , Modelos Animais de Doenças , Feminino , Transportadores de Cassetes de Ligação de ATP
7.
J Biol Chem ; 287(25): 21189-203, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22535962

RESUMO

tert-Butoxy-(4-phenyl-quinolin-3-yl)-acetic acids (tBPQA) are a new class of HIV-1 integrase (IN) inhibitors that are structurally distinct from IN strand transfer inhibitors but analogous to LEDGINs. LEDGINs are a class of potent antiviral compounds that interacts with the lens epithelium-derived growth factor (LEDGF) binding pocket on IN and were identified through competition binding against LEDGF. LEDGF tethers IN to the host chromatin and enables targeted integration of viral DNA. The prevailing understanding of the antiviral mechanism of LEDGINs is that they inhibit LEDGF binding to IN, which prevents targeted integration of HIV-1. We showed that in addition to the properties already known for LEDGINs, the binding of tBPQAs to the IN dimer interface inhibits IN enzymatic activity in a LEDGF-independent manner. Using the analysis of two long terminal repeat junctions in HIV-infected cells, we showed that the inhibition by tBPQAs occurs at or prior to the viral DNA 3'-processing step. Biochemical studies revealed that this inhibition operates by compound-induced conformational changes in the IN dimer that prevent proper assembly of IN onto viral DNA. For the first time, tBPQAs were demonstrated to be allosteric inhibitors of HIV-1 IN displaying a dual mode of action: inhibition of IN-viral DNA assembly and inhibition of IN-LEDGF interaction.


Assuntos
Acetatos/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cromatina/metabolismo , Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/metabolismo , HIV-1/enzimologia , Quinolinas/farmacologia , Fatores de Transcrição/metabolismo , Integração Viral/efeitos dos fármacos , Acetatos/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular , Cromatina/genética , DNA Viral/genética , DNA Viral/metabolismo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/enzimologia , Infecções por HIV/genética , Integrase de HIV/química , Integrase de HIV/genética , Inibidores de Integrase de HIV/química , HIV-1/genética , Humanos , Quinolinas/química , Fatores de Transcrição/genética , Integração Viral/fisiologia
8.
Proc Natl Acad Sci U S A ; 106(18): 7455-60, 2009 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-19416920

RESUMO

Fragment screens for new ligands have had wide success, notwithstanding their constraint to libraries of 1,000-10,000 molecules. Larger libraries would be addressable were molecular docking reliable for fragment screens, but this has not been widely accepted. To investigate docking's ability to prioritize fragments, a library of >137,000 such molecules were docked against the structure of beta-lactamase. Forty-eight fragments highly ranked by docking were acquired and tested; 23 had K(i) values ranging from 0.7 to 9.2 mM. X-ray crystal structures of the enzyme-bound complexes were determined for 8 of the fragments. For 4, the correspondence between the predicted and experimental structures was high (RMSD between 1.2 and 1.4 A), whereas for another 2, the fidelity was lower but retained most key interactions (RMSD 2.4-2.6 A). Two of the 8 fragments adopted very different poses in the active site owing to enzyme conformational changes. The 48% hit rate of the fragment docking compares very favorably with "lead-like" docking and high-throughput screening against the same enzyme. To understand this, we investigated the occurrence of the fragment scaffolds among larger, lead-like molecules. Approximately 1% of commercially available fragments contain these inhibitors whereas only 10(-7)% of lead-like molecules do. This suggests that many more chemotypes and combinations of chemotypes are present among fragments than are available among lead-like molecules, contributing to the higher hit rates. The ability of docking to prioritize these fragments suggests that the technique can be used to exploit the better chemotype coverage that exists at the fragment level.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores de beta-Lactamases , beta-Lactamases/química , Técnicas de Química Combinatória , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Ligantes
9.
J Biol Chem ; 284(48): 33580-99, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19801648

RESUMO

The interaction between lens epithelium-derived growth factor/transcriptional co-activator p75 (LEDGF) and human immunodeficiency virus type 1 (HIV-1) integrase (IN) is essential for HIV-1 replication. Homogeneous time-resolved fluorescence resonance energy transfer assays were developed to characterize HIV-1 integrase dimerization and the interaction between LEDGF and IN dimers. Using these assays in an equilibrium end point dose-response format with mathematical modeling, we determined the dissociation constants of IN dimers (K(dimer) = 67.8 pm) and of LEDGF from IN dimers (K(d) = 10.9 nm). When used in a kinetic format, the assays allowed the determination of the on- and off-rate constants for these same interactions. Integrase dimerization had a k(on) of 0.1247 nm(-1) x min(-1) and a k(off) of 0.0080 min(-1) resulting in a K(dimer) of 64.5 pm. LEDGF binding to IN dimers had a k(on) of 0.0285 nm(-1).min(-1) and a k(off) of 0.2340 min(-1) resulting in a K(d) of 8.2 nm. These binding assays can also be used in an equilibrium end point competition format. In this format, the IN catalytic core domain produced a K(i) of 15.2 nm while competing for integrase dimerization, confirming the very tight interaction of IN with itself. In the same format, LEDGF produced a K(i) value of 35 nm when competing for LEDGF binding to IN dimers. In summary, this study describes a methodology combining homogeneous time-resolved fluorescence resonance energy transfer and mathematical modeling to derive the affinities between IN monomers and between LEDGF and IN dimers. This study revealed the significantly tighter nature of the IN-IN dimer compared with the IN-LEDGF interaction.


Assuntos
Integrase de HIV/química , Integrase de HIV/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Algoritmos , Sequência de Aminoácidos , Ligação Competitiva , Transferência Ressonante de Energia de Fluorescência , Integrase de HIV/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Cinética , Modelos Biológicos , Modelos Químicos , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Multimerização Proteica
10.
MAbs ; 11(8): 1415-1427, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31402751

RESUMO

Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in young children and older adults. Currently, no licensed vaccine is available, and therapeutic options are limited. The primary target of neutralizing antibodies to RSV is the surface fusion (F) glycoprotein. Understanding the recognition of antibodies with high neutralization potencies to RSV F antigen will provide critical insights in developing efficacious RSV antibodies and vaccines. In this study, we isolated and characterized a panel of monoclonal antibodies (mAbs) with high binding affinity to RSV prefusion F trimer and neutralization potency to RSV viruses. The mAbs were mapped to previously defined antigenic sites, and some that mapped to the same antigenic sites showed remarkable diversity in specificity, binding, and neutralization potencies. We found that the isolated site III mAbs shared highly conserved germline V-gene usage, but had different cross-reactivities to human metapneumovirus (hMPV), possibly due to the distinct modes/angles of interaction with RSV and hMPV F proteins. Furthermore, we identified a subset of potent RSV/hMPV cross-neutralizing mAbs that target antigenic site IV and the recently defined antigenic site V, while the majority of the mAbs targeting these two sites only neutralize RSV. Additionally, the isolated mAbs targeting site Ø were mono-specific for RSV and showed a wide range of neutralizing potencies on different RSV subtypes. Our data exemplify the diversity of anti-RSV mAbs and provide new insights into the immune recognition of respiratory viruses in the Pneumoviridae family.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Linfócitos B/imunologia , Epitopos de Linfócito B/imunologia , Memória Imunológica , Vírus Sincicial Respiratório Humano/imunologia , Idoso , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Criança , Pré-Escolar , Humanos
11.
J Mol Biol ; 372(4): 1070-1081, 2007 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-17707402

RESUMO

Tyrosyl-DNA phosphodiesterase 1 (Tdp1) catalyzes the resolution of 3' and 5' phospho-DNA adducts. A defective mutant, associated with the recessive neurodegenerative disease SCAN1, accumulates Tdp1-DNA complexes in vitro. To assess the conservation of enzyme architecture, a 2.0 A crystal structure of yeast Tdp1 was determined that is very similar to human Tdp1. Poorly conserved regions of primary structure are peripheral to an essentially identical catalytic core. Enzyme mechanism was also conserved, because the yeast SCAN1 mutant (H(432)R) enhanced cell sensitivity to the DNA topoisomerase I (Top1) poison camptothecin. A more severe Top1-dependent lethality of Tdp1H(432)N was drug-independent, coinciding with increased covalent Top1-DNA and Tdp1-DNA complex formation in vivo. However, both H(432) mutants were recessive to wild-type Tdp1. Thus, yeast H(432) acts in the general acid/base catalytic mechanism of Tdp1 to resolve 3' phosphotyrosyl and 3' phosphoamide linkages. However, the distinct pattern of mutant Tdp1 activity evident in yeast cells, suggests a more severe defect in Tdp1H(432)N-catalyzed resolution of 3' phospho-adducts.


Assuntos
Sítios de Ligação , DNA Topoisomerases Tipo I/metabolismo , Mutação , Diester Fosfórico Hidrolases , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Adutos de DNA , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Diester Fosfórico Hidrolases/toxicidade , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/toxicidade , Alinhamento de Sequência , Especificidade por Substrato
12.
J Med Chem ; 51(8): 2502-11, 2008 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-18333608

RESUMO

High-throughput screening (HTS) is widely used in drug discovery. Especially for screens of unbiased libraries, false positives can dominate "hit lists"; their origins are much debated. Here we determine the mechanism of every active hit from a screen of 70,563 unbiased molecules against beta-lactamase using quantitative HTS (qHTS). Of the 1,274 initial inhibitors, 95% were detergent-sensitive and were classified as aggregators. Among the 70 remaining were 25 potent, covalent-acting beta-lactams. Mass spectra, counter-screens, and crystallography identified 12 as promiscuous covalent inhibitors. The remaining 33 were either aggregators or irreproducible. No specific reversible inhibitors were found. We turned to molecular docking to prioritize molecules from the same library for testing at higher concentrations. Of 16 tested, 2 were modest inhibitors. Subsequent X-ray structures corresponded to the docking prediction. Analog synthesis improved affinity to 8 microM. These results suggest that it may be the physical behavior of organic molecules, not their reactivity, that accounts for most screening artifacts. Structure-based methods may prioritize weak-but-novel chemotypes in unbiased library screens.


Assuntos
Inibidores Enzimáticos/farmacologia , Inibidores de beta-Lactamases , Cristalografia , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Espectrometria de Massas , Relação Estrutura-Atividade
13.
J Med Chem ; 50(10): 2385-90, 2007 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-17447748

RESUMO

High-throughput screening (HTS) is the primary technique for new lead identification in drug discovery and chemical biology. Unfortunately, it is susceptible to false-positive hits. One common mechanism for such false-positives is the congregation of organic molecules into colloidal aggregates, which nonspecifically inhibit enzymes. To both evaluate the feasibility of large-scale identification of aggregate-based inhibition and quantify its prevalence among screening hits, we tested 70,563 molecules from the National Institutes of Health Chemical Genomics Center (NCGC) library for detergent-sensitive inhibition. Each molecule was screened in at least seven concentrations, such that dose-response curves were obtained for all molecules in the library. There were 1274 inhibitors identified in total, of which 1204 were unambiguously detergent-sensitive. We identified these as aggregate-based inhibitors. Thirty-one library molecules were independently purchased and retested in secondary low-throughput experiments; 29 of these were confirmed as either aggregators or nonaggregators, as appropriate. Finally, with the dose-response information collected for every compound, we could examine the correlation between aggregate-based inhibition and steep dose-response curves. Three key results emerge from this study: first, detergent-dependent identification of aggregate-based inhibition is feasible on the large scale. Second, 95% of the actives obtained in this screen are aggregate-based inhibitors. Third, aggregate-based inhibition is correlated with steep dose-response curves, although not absolutely. The results of this screen are being released publicly via the PubChem database.


Assuntos
Detergentes/química , Compostos Orgânicos/química , Preparações Farmacêuticas/química , Fenômenos Químicos , Físico-Química , Coloides , Desenho de Fármacos , Estudos de Viabilidade , Cinética , beta-Lactamases/química
14.
Curr Protoc Chem Biol ; 9(3): 196-212, 2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28910858

RESUMO

Virtual screening (VS) in the context of drug discovery is the use of computational methods to discover novel ligands with a desired biological activity from within a larger collection of molecules. These techniques have been in use for many years, there is a wide range of methodologies available, and many successful applications have been reported in the literature. VS is often used as an alternative or a complement to High-throughput screening (HTS) or other methods to identify ligands for target validation or medicinal chemistry projects. This unit does not present an exhaustive review of available methods, or document specific instructions on use of individual software packages. Rather, a general overview of the methods available are presented and general strategies are described for VS based on accepted practices and the authors' experience as computational chemists in an industrial research laboratory. First, the most common methods available for VS are reviewed, categorized as either receptor- or ligand-based. Subsequently, strategic considerations are presented for choosing a VS method, or a combination of methods, as well as the necessary steps to prepare, run, and analyze a VS campaign. © 2017 by John Wiley & Sons, Inc.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química
15.
Structure ; 12(9): 1705-17, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15341734

RESUMO

Dihydropterate synthase (DHPS) is the target for the sulfonamide class of antibiotics, but increasing resistance has encouraged the development of new therapeutic agents against this enzyme. One approach is to identify molecules that occupy the pterin binding pocket which is distinct from the pABA binding pocket that binds sulfonamides. Toward this goal, we present five crystal structures of DHPS from Bacillus anthracis, a well-documented bioterrorism agent. Three DHPS structures are already known, but our B. anthracis structures provide new insights into the enzyme mechanism. We show how an arginine side chain mimics the pterin ring in binding within the pterin binding pocket. The structures of two substrate analog complexes and the first structure of a DHPS-product complex offer new insights into the catalytic mechanism and the architecture of the pABA binding pocket. Finally, as an initial step in the development of pterin-based inhibitors, we present the structure of DHPS complexed with 5-nitro-6-methylamino-isocytosine.


Assuntos
Bacillus anthracis/enzimologia , Di-Hidropteroato Sintase/antagonistas & inibidores , Di-Hidropteroato Sintase/química , Inibidores Enzimáticos/química , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Bacillus anthracis/genética , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Bioterrorismo , Cristalografia por Raios X , Di-Hidropteroato Sintase/genética , Di-Hidropteroato Sintase/metabolismo , Desenho de Fármacos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Estrutura Secundária de Proteína , Pterinas/química , Pterinas/metabolismo , Alinhamento de Sequência
16.
Nat Struct Mol Biol ; 23(4): 293-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26950369

RESUMO

The orexin (also known as hypocretin) G protein-coupled receptors (GPCRs) regulate sleep and other behavioral functions in mammals, and are therapeutic targets for sleep and wake disorders. The human receptors hOX1R and hOX2R, which are 64% identical in sequence, have overlapping but distinct physiological functions and potential therapeutic profiles. We determined structures of hOX1R bound to the OX1R-selective antagonist SB-674042 and the dual antagonist suvorexant at 2.8-Å and 2.75-Å resolution, respectively, and used molecular modeling to illuminate mechanisms of antagonist subtype selectivity between hOX1R and hOX2R. The hOX1R structures also reveal a conserved amphipathic α-helix, in the extracellular N-terminal region, that interacts with orexin-A and is essential for high-potency neuropeptide activation at both receptors. The orexin-receptor crystal structures are valuable tools for the design and development of selective orexin-receptor antagonists and agonists.


Assuntos
Azepinas/farmacologia , Antagonistas dos Receptores de Orexina/farmacologia , Receptores de Orexina/química , Receptores de Orexina/metabolismo , Pirrolidinas/farmacologia , Tiazóis/farmacologia , Triazóis/farmacologia , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica
17.
J Med Chem ; 59(10): 4778-89, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27088900

RESUMO

Neurofibrillary tangles (NFTs) made up of aggregated tau protein have been identified as the pathologic hallmark of several neurodegenerative diseases including Alzheimer's disease. In vivo detection of NFTs using PET imaging represents a unique opportunity to develop a pharmacodynamic tool to accelerate the discovery of new disease modifying therapeutics targeting tau pathology. Herein, we present the discovery of 6-(fluoro-(18)F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine, 6 ([(18)F]-MK-6240), as a novel PET tracer for detecting NFTs. 6 exhibits high specificity and selectivity for binding to NFTs, with suitable physicochemical properties and in vivo pharmacokinetics.


Assuntos
Descoberta de Drogas , Isoquinolinas/química , Imagem Molecular , Emaranhados Neurofibrilares/patologia , Tomografia por Emissão de Pósitrons , Radioisótopos de Flúor/química , Humanos , Isoquinolinas/síntese química , Isoquinolinas/farmacocinética , Estrutura Molecular , Emaranhados Neurofibrilares/metabolismo
18.
J Med Chem ; 58(4): 1630-43, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25574686

RESUMO

GS-5806 is a novel, orally bioavailable RSV fusion inhibitor discovered following a lead optimization campaign on a screening hit. The oral absorption properties were optimized by converting to the pyrazolo[1,5-a]-pyrimidine heterocycle, while potency, metabolic, and physicochemical properties were optimized by introducing the para-chloro and aminopyrrolidine groups. A mean EC50 = 0.43 nM was found toward a panel of 75 RSV A and B clinical isolates and dose-dependent antiviral efficacy in the cotton rat model of RSV infection. Oral bioavailability in preclinical species ranged from 46 to 100%, with evidence of efficient penetration into lung tissue. In healthy human volunteers experimentally infected with RSV, a potent antiviral effect was observed with a mean 4.2 log10 reduction in peak viral load and a significant reduction in disease severity compared to placebo. In conclusion, a potent, once daily, oral RSV fusion inhibitor with the potential to treat RSV infection in infants and adults is reported.


Assuntos
Antivirais/farmacologia , Descoberta de Drogas , Pirazóis/farmacologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Sulfonamidas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Administração Oral , Animais , Antivirais/administração & dosagem , Antivirais/química , Cães , Relação Dose-Resposta a Droga , Humanos , Indazóis , Macaca fascicularis , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pirazóis/administração & dosagem , Pirazóis/química , Ratos , Vírus Sinciciais Respiratórios/fisiologia , Relação Estrutura-Atividade , Sulfonamidas/administração & dosagem , Sulfonamidas/química
19.
J Acquir Immune Defic Syndr ; 59(1): 47-54, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21997204

RESUMO

BACKGROUND: The registrational phase III clinical trials of the nonnucleoside reverse transcriptase (RT) inhibitor (NNRTI) rilpivirine (RPV) in combination with two nucleoside/nucleotide RT inhibitors (NRTIs) found a unique genotypic resistance pattern involving the NNRTI mutation E138K with the NRTI mutation M184I. Eighty percent of subjects used emtricitabine (FTC) and tenofovir disoproxil fumarate (TDF); a single tablet regimen of FTC/RPV/TDF is in development. METHODS: HIV-1 with E138K and/or M184V or I mutations were constructed and phenotyped in MT-2 cells and the PhenoSense and Antivirogram assays. Viral fitness was determined using growth competitions. Molecular models of the mutants were constructed from the RT-RPV crystal structure. RESULTS: The E138K mutant showed low-level reduced susceptibility to RPV (2.4-fold), but full susceptibility to FTC and tenofovir (TFV). Viruses with M184V or M184I showed high-level resistance to FTC and full susceptibility to RPV and TFV. Addition of M184I, but not M184V, to E138K, further decreased susceptibility to RPV and maintained FTC resistance. The E138K and M184V or I single and double mutants showed decreased replication fitness compared with wild type. M184V outcompeted M184I when compared directly and in the background of E138K. E138K + M184I was less fit than either E138K or M184I alone. Removing a salt bridge between E138/K101 is implicated in resistance to RPV. CONCLUSIONS: The higher frequency of E138K and M184I among RPV + FTC/TDF virologic failures is due to reduced susceptibility of the single mutants to RPV and FTC and the enhanced resistance to RPV for the double mutant at the cost of decreased viral fitness.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Farmacorresistência Viral/genética , Transcriptase Reversa do HIV/genética , HIV-1/efeitos dos fármacos , HIV-1/genética , Nitrilas/uso terapêutico , Pirimidinas/uso terapêutico , Fármacos Anti-HIV/farmacologia , Regulação Enzimológica da Expressão Gênica , Regulação Viral da Expressão Gênica/fisiologia , Transcriptase Reversa do HIV/metabolismo , HIV-1/fisiologia , Humanos , Modelos Moleculares , Mutação , Nitrilas/farmacologia , Conformação Proteica , Pirimidinas/farmacologia , RNA Viral/genética , RNA Viral/metabolismo , Rilpivirina , Replicação Viral
20.
J Med Chem ; 53(21): 7852-63, 2010 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-20945905

RESUMO

We investigated a series of sulfonamide boronic acids that resulted from the merging of two unrelated AmpC ß-lactamase inhibitor series. The new boronic acids differed in the replacement of the canonical carboxamide, found in all penicillin and cephalosporin antibiotics, with a sulfonamide. Surprisingly, these sulfonamides had a highly distinct structure-activity relationship from the previously explored carboxamides, high ligand efficiencies (up to 0.91), and K(i) values down to 25 nM and up to 23 times better for smaller analogues. Conversely, K(i) values were 10-20 times worse for larger molecules than in the carboxamide congener series. X-ray crystal structures (1.6-1.8 Å) of AmpC with three of the new sulfonamides suggest that this altered structure-activity relationship results from the different geometry and polarity of the sulfonamide versus the carboxamide. The most potent inhibitor reversed ß-lactamase-mediated resistance to third generation cephalosporins, lowering their minimum inhibitory concentrations up to 32-fold in cell culture.


Assuntos
Antibacterianos/síntese química , Ácidos Borônicos/síntese química , Sulfonamidas/síntese química , Inibidores de beta-Lactamases , Antibacterianos/química , Antibacterianos/farmacologia , Ácidos Borônicos/química , Ácidos Borônicos/farmacologia , Cristalografia por Raios X , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Farmacorresistência Bacteriana , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Estereoisomerismo , Relação Estrutura-Atividade , Sulfonamidas/química , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA