Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Monit Assess ; 185(11): 9221-36, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23780728

RESUMO

The Bode catchment (Germany) shows strong land use gradients from forested parts of the National Park (23% of total land cover) to agricultural (70%) and urbanised areas (7%). It is part of the Terrestrial Environmental Observatories of the German Helmholtz association. We performed a biogeochemical analysis of the entire river network. Surface water was sampled at 21 headwaters and at ten downstream sites, before (in early spring) and during the growing season (in late summer). Many parameters showed lower concentrations in headwaters than in downstream reaches, among them nutrients (ammonium, nitrate and phosphorus), dissolved copper and seston dry mass. Nitrate and phosphorus concentrations were positively related to the proportion of agricultural area within the catchment. Punctual anthropogenic loads affected some parameters such as chloride and arsenic. Chlorophyll a concentration and total phosphorus in surface waters were positively related. The concentration of dissolved organic carbon (DOC) was higher in summer than in spring, whereas the molecular size of DOC was lower in summer. The specific UV absorption at 254 nm, indicating the content of humic substances, was higher in headwaters than in downstream reaches and was positively related to the proportion of forest within the catchment. CO2 oversaturation of the water was higher downstream compared with headwaters and was higher in summer than in spring. It was correlated negatively with oxygen saturation and positively with DOC concentration but negatively with DOC quality (molecular size and humic content). A principle component analysis clearly separated the effects of site (44%) and season (15%), demonstrating the strong effect of land use on biogeochemical parameters.


Assuntos
Monitoramento Ambiental , Rios/química , Poluentes Químicos da Água/análise , Agricultura , Carbono/análise , Clorofila/análise , Clorofila A , Alemanha , Substâncias Húmicas/análise , Nitratos/análise , Nitrogênio/análise , Fósforo/análise , Estações do Ano
2.
Sci Total Environ ; 769: 144324, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33482551

RESUMO

Meeting ecological and water quality standards in lotic ecosystems is often failed due to multiple stressors. However, disentangling stressor effects and identifying relevant stressor-effect-relationships in complex environmental settings remain major challenges. By combining state-of-the-art methods from ecotoxicology and aquatic ecosystem analysis, we aimed here to disentangle the effects of multiple chemical and non-chemical stressors along a longitudinal land use gradient in a third-order river in Germany. We distinguished and evaluated four dominant stressor categories along this gradient: (1) Hydromorphological alterations: Flow diversity and substrate diversity correlated with the EU-Water Framework Directive based indicators for the quality element macroinvertebrates, which deteriorated at the transition from near-natural reference sites to urban sites. (2) Elevated nutrient levels and eutrophication: Low to moderate nutrient concentrations together with complete canopy cover at the reference sites correlated with low densities of benthic algae (biofilms). We found no more systematic relation of algal density with nutrient concentrations at the downstream sites, suggesting that limiting concentrations are exceeded already at moderate nutrient concentrations and reduced shading by riparian vegetation. (3) Elevated organic matter levels: Wastewater treatment plants (WWTP) and stormwater drainage systems were the primary sources of bioavailable dissolved organic carbon. Consequently, planktonic bacterial production and especially extracellular enzyme activity increased downstream of those effluents showing local peaks. (4) Micropollutants and toxicity-related stress: WWTPs were the predominant source of toxic stress, resulting in a rapid increase of the toxicity for invertebrates and algae with only one order of magnitude below the acute toxic levels. This toxicity correlates negatively with the contribution of invertebrate species being sensitive towards pesticides (SPEARpesticides index), probably contributing to the loss of biodiversity recorded in response to WWTP effluents. Our longitudinal approach highlights the potential of coordinated community efforts in supplementing established monitoring methods to tackle the complex phenomenon of multiple stress.

3.
Sci Total Environ ; 407(5): 1598-612, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19106003

RESUMO

River polders are retention basins contained by levees alongside rivers into which water from the main river channel is diverted during extreme floods in order to cap the peak discharge of the flood hydrograph and to alleviate downstream flood risk by reducing the water levels. The retained water, however, is stagnant and the organic material in the water and the bottom sediments imposes a strong oxygen demand on the water. This paper presents a quasi two-dimensional computer-based methodology to assess the environmental risk exhibited by the operation of polders with which the concentration of dissolved oxygen in river and polder water can be simulated. A Monte-Carlo analysis allows the probability distribution of all the outcomes of the minimum dissolved oxygen levels in the water to be derived. From this analysis, the environmental risk of the dissolved oxygen concentrations in the polder water falling below 2 mg O2/L (the level considered critical for aquatic ecosystems) can be determined. The August 2002 extreme flood event on the Elbe River, Germany, with a proposed polder system variant was used to calibrate the model. A daily time step was used to for the simulations for a time frame 12-21 August 2008. The results show plausible spatial and temporal variations in the dissolved oxygen concentrations within the polders. The quasi-2D approach was successful in simulating the spatial distribution of water quality constituents in the polder system. There is up to approximately 20% risk that dissolved oxygen levels fall below 2 mg/L in the polders. This risk can potentially increase if sediment oxygen demand increases due to crop residue and water temperatures in polders increase. High nutrient transport in the river during flooding can cause a spurt of phytoplankton growth in the polders.

4.
Sci Total Environ ; 397(1-3): 86-102, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18400260

RESUMO

In flood modeling, many one-dimensional (1D) hydrodynamic and water quality models are too restricted in capturing the spatial differentiation of processes within a polder or system of polders and two-dimensional (2D) models are too demanding in data requirements and computational resources, especially if Monte-Carlo techniques are to be used for model uncertainty analyses. The first goal of this paper is to show the successful development of a quasi-2D modeling approach which still calculates the dynamic wave in 1D but the discretisation of the computational units is in 2D, allowing a better spatial representation of the flow and substance transport processes in the polders without a large additional expenditure on data pre-processing and simulation processing. The models DYNHYD (1D hydrodynamics) and TOXI (sediment and micro-pollutant transport) were used as a basis for the hydrodynamic and water quality simulations. An extreme flood event on the Elbe River, Germany, with a proposed polder system variant was used as a test case. The results show a plausible differentiation of suspended sediment and zinc concentrations within the polders both spatially and temporally. This fulfills the second goal of this research. The third goal of this work is to provide an example methodology of carrying out an environmental risk assessment in inundated areas by flood waters, as required by the European Union floods directive. The deposition of zinc in polders was used for this example, due to its high contamination potential in the Elbe River. The extended quasi-2D modeling system incorporates a Monte-Carlo uncertainty analysis to assess the environmental impact of heavy metal deposition in the polders during extreme flooding. The environmental risk computed gives a 48% chance of exceeding the inspection value of 500 mg zinc/kg sediment for a flood such as the August 2002 event.

5.
Environ Monit Assess ; 135(1-3): 227-40, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17342431

RESUMO

The European Water Framework Directive (WFD) is the overall driver for this environmental study and currently requires the identification of patterns and sources of pollution (monitoring) to support objective ecological sound decision making and specific measures to enhance river water quality (modelling). The purpose of this paper is to demonstrate in a case study the interrelationship between (1) hydrologic and water quality monitoring data for river basin characterization and (2) modelling applications to assess resources management alternatives. The study deals with monitoring assessment and modelling of river water quality data of the main stem Saale River and its principal tributaries. For a period of 6 years the data, which was sampled by Environmental Agencies of the German states of Thuringia, Saxony and Saxony-Anhalt, was investigated to assess sources and indicators of pollution. In addition to the assessment a modelling exercise of the routing of different pollutants was carried out in the lower part of the test basin. The modelling is a tool to facilitate the evaluation of alternative measures to reduce contaminant loadings and improve ecological status of a water body as required by WFD. The transport of suspended solids, salts and heavy metals was modelled along a selected Saale reach under strong anthropogenic influence in terms of contaminants and river morphology between the city of Halle and the confluence with the Elbe River. The simulations were carried out with the model WASP5 which is a dynamic flood-routing and water quality model package developed by the US Environmental Protection Agency.


Assuntos
Monitoramento Ambiental , Água Doce/análise , Poluentes Químicos da Água/análise , Abastecimento de Água/análise , Cidades , Água Doce/química , Geografia , Alemanha , Metais Pesados/análise , Modelos Teóricos , Medição de Risco , Sais/análise , Fatores de Tempo , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA