Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Neurosci ; 43(1): 14-27, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36384682

RESUMO

In the neocortex, fast synaptic inhibition orchestrates both spontaneous and sensory-evoked activity. GABAergic interneurons (INs) inhibit pyramidal neurons (PNs) directly, modulating their output activity and thus contributing to balance cortical networks. Moreover, several IN subtypes also inhibit other INs, forming specific disinhibitory circuits, which play crucial roles in several cognitive functions. Here, we studied a subpopulation of somatostatin-positive INs, the Martinotti cells (MCs) in layer 2/3 of the mouse barrel cortex (both sexes). MCs inhibit the distal portion of PN apical dendrites, thus controlling dendrite electrogenesis and synaptic integration. Yet, it is poorly understood whether MCs inhibit other elements of the cortical circuits, and the connectivity properties with non-PN targets are unknown. We found that MCs have a strong preference for PN dendrites, but they also considerably connect with parvalbumin-positive, vasoactive intestinal peptide-expressing, and layer 1 (L1) INs. Remarkably, GABAergic synapses from MCs exhibited clear cell type-specific short-term plasticity. Moreover, whereas the biophysical properties of MC-PN synapses were consistent with distal dendritic inhibition, MC-IN synapses exhibited characteristics of fast perisomatic inhibition. Finally, MC-PN connections used α5-containing GABAA receptors (GABAARs), but this subunit was not expressed by the other INs targeted by MCs. We reveal a specialized connectivity blueprint of MCs within different elements of superficial cortical layers. In addition, our results identify α5-GABAARs as the molecular fingerprint of MC-PN dendritic inhibition. This is of critical importance, given the role of α5-GABAARs in cognitive performance and their involvement in several brain diseases.SIGNIFICANCE STATEMENT Martinotti cells (MCs) are a prominent, broad subclass of somatostatin-expressing GABAergic interneurons, specialized in controlling distal dendrites of pyramidal neurons (PNs) and taking part in several cognitive functions. Here we characterize the connectivity pattern of MCs with other interneurons in the superficial layers (L1 and L2/3) of the mouse barrel cortex. We found that the connectivity pattern of MCs with PNs as well as parvalbumin, vasoactive intestinal peptide, and L1 interneurons exhibit target-specific plasticity and biophysical properties. The specificity of α5-GABAARs at MC-PN synapses and the lack or functional expression of this subunit by other cell types define the molecular identity of MC-PN connections and the exclusive involvement of this inhibitory circuits in α5-dependent cognitive tasks.


Assuntos
Parvalbuminas , Peptídeo Intestinal Vasoativo , Feminino , Masculino , Animais , Peptídeo Intestinal Vasoativo/metabolismo , Parvalbuminas/metabolismo , Neurônios , Células Piramidais/fisiologia , Interneurônios/fisiologia , Somatostatina/metabolismo , Sinapses/fisiologia , Ácido gama-Aminobutírico/metabolismo
2.
PLoS Biol ; 17(9): e3000419, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31483783

RESUMO

Parvalbumin (PV)-positive interneurons modulate cortical activity through highly specialized connectivity patterns onto excitatory pyramidal neurons (PNs) and other inhibitory cells. PV cells are autoconnected through powerful autapses, but the contribution of this form of fast disinhibition to cortical function is unknown. We found that autaptic transmission represents the most powerful inhibitory input of PV cells in neocortical layer V. Autaptic strength was greater than synaptic strength onto PNs as a result of a larger quantal size, whereas autaptic and heterosynaptic PV-PV synapses differed in the number of release sites. Overall, single-axon autaptic transmission contributed to approximately 40% of the global inhibition (mostly perisomatic) that PV interneurons received. The strength of autaptic transmission modulated the coupling of PV-cell firing with optogenetically induced γ-oscillations, preventing high-frequency bursts of spikes. Autaptic self-inhibition represents an exceptionally large and fast disinhibitory mechanism, favoring synchronization of PV-cell firing during cognitive-relevant cortical network activity.


Assuntos
Interneurônios/fisiologia , Neocórtex/fisiologia , Sinapses , Transmissão Sináptica , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL
3.
Mol Psychiatry ; 25(6): 1159-1174, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31439936

RESUMO

Exposure to stress during early life (infancy/childhood) has long-term effects on the structure and function of the prefrontal cortex (PFC), and increases the risk for adult depression and anxiety disorders. However, little is known about the molecular and cellular mechanisms of these effects. Here, we focused on changes induced by chronic maternal separation during the first 2 weeks of postnatal life. Unbiased mRNA expression profiling in the medial PFC (mPFC) of maternally separated (MS) pups identified an increased expression of myelin-related genes and a decreased expression of immediate early genes. Oligodendrocyte lineage markers and birthdating experiments indicated a precocious oligodendrocyte differentiation in the mPFC at P15, leading to a depletion of the oligodendrocyte progenitor pool in MS adults. We tested the role of neuronal activity in oligodendrogenesis, using designed receptors exclusively activated by designed drugs (DREADDs) techniques. hM4Di or hM3Dq constructs were transfected into mPFC neurons using fast-acting AAV8 viruses. Reduction of mPFC neuron excitability during the first 2 postnatal weeks caused a premature differentiation of oligodendrocytes similar to the MS pups, while chemogenetic activation normalised it in the MS animals. Bidirectional manipulation of neuron excitability in the mPFC during the P2-P14 period had long lasting effects on adult emotional behaviours and on temporal object recognition: hM4Di mimicked MS effects, while hM3Dq prevented the pro-depressive effects and short-term memory impairment of MS. Thus, our results identify neuronal activity as a critical target of early-life stress and demonstrate its function in controlling both postnatal oligodendrogenesis and adult mPFC-related behaviours.


Assuntos
Privação Materna , Oligodendroglia/patologia , Estresse Psicológico , Animais , Comportamento Animal , Proliferação de Células , Emoções , Feminino , Masculino , Camundongos , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/fisiopatologia , Gravidez
4.
PLoS Biol ; 15(1): e2001378, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28103228

RESUMO

One outstanding difference between Homo sapiens and other mammals is the ability to perform highly complex cognitive tasks and behaviors, such as language, abstract thinking, and cultural diversity. How is this accomplished? According to one prominent theory, cognitive complexity is proportional to the repetition of specific computational modules over a large surface expansion of the cerebral cortex (neocortex). However, the human neocortex was shown to also possess unique features at the cellular and synaptic levels, raising the possibility that expanding the computational module is not the only mechanism underlying complex thinking. In a study published in PLOS Biology, Szegedi and colleagues analyzed a specific cortical circuit from live postoperative human tissue, showing that human-specific, very powerful excitatory connections between principal pyramidal neurons and inhibitory neurons are highly plastic. This suggests that exclusive plasticity of specific microcircuits might be considered among the mechanisms endowing the human neocortex with the ability to perform highly complex cognitive tasks.


Assuntos
Córtex Cerebral/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Humanos , Interneurônios/fisiologia , Camundongos , Tamanho do Órgão , Especificidade da Espécie
5.
Neurobiol Dis ; 108: 100-114, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28823934

RESUMO

Electrophysiological experiments in the partial cortical isolation ("undercut" or "UC") model of injury-induced neocortical epileptogenesis have shown alterations in GABAergic synaptic transmission attributable to abnormalities in presynaptic terminals. To determine whether the decreased inhibition was associated with structural abnormalities in GABAergic interneurons, we used immunocytochemical techniques, confocal microscopy and EM in UC and control sensorimotor rat cortex to analyze structural alterations in fast-spiking parvalbumin-containing interneurons and pyramidal (Pyr) cells of layer V. Principle findings were: 1) there were no decreases in counts of parvalbumin (PV)- or GABA-immunoreactive interneurons in UC cortex, however there were significant reductions in expression of VGAT and GAD-65 and -67 in halos of GABAergic terminals around Pyr somata in layer V. 2) Consistent with previous results, somatic size and density of Pyr cells was decreased in infragranular layers of UC cortex. 3) Dendrites of biocytin-filled FS interneurons were significantly decreased in volume. 4) There were decreases in the size and VGAT content of GABAergic boutons in axons of biocytin-filled FS cells in the UC, together with a decrease in colocalization with postsynaptic gephyrin, suggesting a reduction in GABAergic synapses. Quantitative EM of layer V Pyr somata confirmed the reduction in inhibitory synapses. 5) There were marked and lasting reductions in brain derived neurotrophic factor (BDNF)-IR and -mRNA in Pyr cells and decreased TrkB-IR on PV cells in UC cortex. 6) Results lead to the hypothesis that reduction in trophic support by BDNF derived from Pyr cells may contribute to the regressive changes in axonal terminals and dendrites of FS cells in the UC cortex and decreased GABAergic inhibition. SIGNIFICANCE: Injury to cortical structures is a major cause of epilepsy, accounting for about 20% of cases in the general population, with an incidence as high as ~50% among brain-injured personnel in wartime. Loss of GABAergic inhibitory interneurons is a significant pathophysiological factor associated with epileptogenesis following brain trauma and other etiologies. Results of these experiments show that the largest population of cortical interneurons, the parvalbumin-containing fast-spiking (FS) interneurons, are preserved in the partial neocortical isolation model of partial epilepsy. However, axonal terminals of these cells are structurally abnormal, have decreased content of GABA synthetic enzymes and vesicular GABA transporter and make fewer synapses onto pyramidal neurons. These structural abnormalities underlie defects in GABAergic neurotransmission that are a key pathophysiological factor in epileptogenesis found in electrophysiological experiments. BDNF, and its TrkB receptor, key factors for maintenance of interneurons and pyramidal neurons, are decreased in the injured cortex. Results suggest that supplying BDNF to the injured epileptogenic brain may reverse the structural and functional abnormalities in the parvalbumin FS interneurons and provide an antiepileptogenic therapy.


Assuntos
Epilepsia Pós-Traumática/patologia , Neurônios GABAérgicos/patologia , Interneurônios/patologia , Potenciais de Ação , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Epilepsia Pós-Traumática/fisiopatologia , Neurônios GABAérgicos/fisiologia , Glutamato Descarboxilase/metabolismo , Imuno-Histoquímica , Interneurônios/fisiologia , Masculino , Microscopia Confocal , Microscopia Eletrônica , Neocórtex/patologia , Neocórtex/fisiopatologia , Parvalbuminas/metabolismo , Células Piramidais/patologia , Células Piramidais/fisiologia , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Receptor trkB/metabolismo , Sinaptofisina/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
6.
PLoS Biol ; 12(7): e1001903, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25003184

RESUMO

In the neocortex, the coexistence of temporally locked excitation and inhibition governs complex network activity underlying cognitive functions, and is believed to be altered in several brain diseases. Here we show that this equilibrium can be unlocked by increased activity of layer 5 pyramidal neurons of the mouse neocortex. Somatic depolarization or short bursts of action potentials of layer 5 pyramidal neurons induced a selective long-term potentiation of GABAergic synapses (LTPi) without affecting glutamatergic inputs. Remarkably, LTPi was selective for perisomatic inhibition from parvalbumin basket cells, leaving dendritic inhibition intact. It relied on retrograde signaling of nitric oxide, which persistently altered presynaptic GABA release and diffused to inhibitory synapses impinging on adjacent pyramidal neurons. LTPi reduced the time window of synaptic summation and increased the temporal precision of spike generation. Thus, increases in single cortical pyramidal neuron activity can induce an interneuron-selective GABAergic plasticity effectively altering the computation of temporally coded information.


Assuntos
Células Piramidais/fisiologia , Potenciais de Ação/fisiologia , Animais , Canais de Cálcio Tipo L/fisiologia , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Camundongos Endogâmicos C57BL , Neocórtex/citologia , Plasticidade Neuronal/fisiologia , Neurônios , Técnicas de Patch-Clamp , Ácido gama-Aminobutírico/fisiologia
7.
Cereb Cortex ; 26(4): 1778-94, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26819275

RESUMO

Severe myoclonic epilepsy of infancy (SMEI) is associated with loss of function of the SCN1A gene encoding the NaV1.1 sodium channel isoform. Previous studies in Scn1a(-/+) mice during the pre-epileptic period reported selective reduction in interneuron excitability and proposed this as the main pathological mechanism underlying SMEI. Yet, the functional consequences of this interneuronal dysfunction at the circuit level in vivo are unknown. Here, we investigated whether Scn1a(-/+) mice showed alterations in cortical network function. We found that various forms of spontaneous network activity were similar in Scn1a(-/+) during the pre-epileptic period compared with wild-type (WT) in vivo. Importantly, in brain slices from Scn1a(-/+) mice, the excitability of parvalbumin (PV) and somatostatin (SST) interneurons was reduced, epileptiform activity propagated more rapidly, and complex synaptic changes were observed. However, in vivo, optogenetic reduction of firing in PV or SST cells in WT mice modified ongoing network activities, and juxtasomal recordings from identified PV and SST interneurons showed unaffected interneuronal firing during spontaneous cortical dynamics in Scn1a(-/+) compared with WT. These results demonstrate that interneuronal hypoexcitability is not observed in Scn1a(-/+) mice during spontaneous activities in vivo and suggest that additional mechanisms may contribute to homeostatic rearrangements and the pathogenesis of SMEI.


Assuntos
Córtex Cerebral/fisiopatologia , Interneurônios/fisiologia , Síndrome de Opsoclonia-Mioclonia/fisiopatologia , Potenciais de Ação , Animais , Ondas Encefálicas , Modelos Animais de Doenças , Feminino , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Vias Neurais/fisiopatologia , Síndrome de Opsoclonia-Mioclonia/genética , Parvalbuminas/metabolismo , Somatostatina/metabolismo , Potenciais Sinápticos
8.
EMBO Rep ; 14(7): 645-51, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23732542

RESUMO

SNAP-25 is a key component of the synaptic-vesicle fusion machinery, involved in several psychiatric diseases including schizophrenia and ADHD. SNAP-25 protein expression is lower in different brain areas of schizophrenic patients and in ADHD mouse models. How the reduced expression of SNAP-25 alters the properties of synaptic transmission, leading to a pathological phenotype, is unknown. We show that, unexpectedly, halved SNAP-25 levels at 13-14 DIV not only fail to impair synaptic transmission but instead enhance evoked glutamatergic neurotransmission. This effect is possibly dependent on presynaptic voltage-gated calcium channel activity and is not accompanied by changes in spontaneous quantal events or in the pool of readily releasable synaptic vesicles. Notably, synapses of 13-14 DIV neurons with reduced SNAP-25 expression show paired-pulse depression as opposed to paired-pulse facilitation occurring in their wild-type counterparts. This phenotype disappears with synapse maturation. As alterations in short-term plasticity represent a new mechanism contributing to cognitive impairments in intellectual disabilities, our data provide mechanistic clues for neuronal circuit alterations in psychiatric diseases characterized by reduced expression of SNAP-25.


Assuntos
Ácido Glutâmico/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Proteína 25 Associada a Sinaptossoma/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Ácido Glutâmico/farmacologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Humanos , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Transmissão Sináptica/efeitos dos fármacos , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/fisiologia , Proteína 25 Associada a Sinaptossoma/antagonistas & inibidores , Proteína 25 Associada a Sinaptossoma/genética , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia
9.
Opt Express ; 22(24): 30013-23, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25606931

RESUMO

The two-dimensional single shot transverse coherence of the Self-Amplified Spontaneous Emission of the SPARC_LAB Free-Electron Laser was measured through the statistical analysis of a speckle field produced by heterodyning the radiation beam with a huge number of reference waves, scattered by a suspension of particles. In this paper we report the measurements and the evaluation of the transverse coherence along the SPARC_LAB undulator modules. The measure method was demonstrated to be precise and robust, it does not require any a priori assumptions and can be implemented over a wide range of wavelengths, from the optical radiation to the x-rays.


Assuntos
Amplificadores Eletrônicos , Elétrons , Lasers , Óptica e Fotônica/métodos , Simulação por Computador , Modelos Teóricos , Termodinâmica
10.
ACS Chem Neurosci ; 15(8): 1611-1618, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38580316

RESUMO

Depression is one of the most burdensome psychiatric disorders, affecting hundreds of millions of people worldwide. The disease is characterized not only by severe emotional and affective impairments, but also by disturbed vegetative and cognitive functions. Although many candidate mechanisms have been proposed to cause the disease, the pathophysiology of cognitive impairments in depression remains unclear. In this article, we aim to assess the link between cognitive alterations in depression and possible developmental changes in neuronal circuit wiring during critical periods of susceptibility. We review the existing literature and propose a role of serotonin signaling during development in shaping the functional states of prefrontal neuronal circuits and prefronto-thalamic loops. We discuss how early life insults affecting the serotonergic system could be important in the alterations of these local and long-range circuits, thus favoring the emergence of neurodevelopmental disorders, such as depression.


Assuntos
Disfunção Cognitiva , Transtornos do Neurodesenvolvimento , Humanos , Depressão , Córtex Pré-Frontal , Tálamo
11.
bioRxiv ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39026855

RESUMO

In the mammalian neocortex, GABAergic interneurons (INs) inhibit cortical networks in profoundly different ways. The extent to which this depends on how different INs process excitatory signals along their dendrites is poorly understood. Here, we reveal that the functional specialization of two major populations of cortical INs is determined by the unique association of different dendritic integration modes with distinct synaptic organization motifs. We found that somatostatin (SST)-INs exhibit NMDAR-dependent dendritic integration and uniform synapse density along the dendritic tree. In contrast, dendrites of parvalbumin (PV)-INs exhibit passive synaptic integration coupled with proximally enriched synaptic distributions. Theoretical analysis shows that these two dendritic configurations result in different strategies to optimize synaptic efficacy in thin dendritic structures. Yet, the two configurations lead to distinct temporal engagement of each IN during network activity. We confirmed these predictions with in vivo recordings of IN activity in the visual cortex of awake mice, revealing a rapid and linear recruitment of PV-INs as opposed to a long-lasting integrative activation of SST-INs. Our work reveals the existence of distinct dendritic strategies that confer distinct temporal representations for the two major classes of neocortical INs and thus dynamics of inhibition.

12.
J Neurosci ; 32(47): 16616-28, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23175817

RESUMO

Correct brain functioning relies on the precise activity of a myriad of synapses assembling neurons in complex networks. In the hippocampus, highly diverse inhibitory circuits differently govern several physiologically relevant network activities. Particularly, perisomatic inhibition provided by specific interneurons was proposed to control emotional states, and could therefore be affected by mood disorders and their therapy. We found that both chronic and acute administration of two major antidepressants, imipramine and fluoxetine, strongly and directly altered GABA-mediated (GABAergic) hippocampal neurotransmission in mice and rats, independently of their effects on amine reuptake systems. These drugs affected GABA release from synapses formed by fast-spiking cells, but not interneurons expressing cannabinoid receptor type 1, resulting in the disruption of γ oscillations. This differential effect, shared by two types of antidepressants, suggests a new mechanism of action of these medications, and a possible role of perisomatic inhibition in depressive disorders.


Assuntos
Antidepressivos/farmacologia , Hipocampo/efeitos dos fármacos , Inibição Psicológica , Rede Nervosa/efeitos dos fármacos , Animais , Antidepressivos Tricíclicos/farmacologia , Monoaminas Biogênicas/metabolismo , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/fisiologia , Interpretação Estatística de Dados , Eletroencefalografia/efeitos dos fármacos , Potenciais Evocados/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Fluoxetina/farmacologia , Imipramina/farmacologia , Interneurônios/efeitos dos fármacos , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/fisiologia
13.
PLoS Biol ; 8(9)2010 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-20927409

RESUMO

Networks of specific inhibitory interneurons regulate principal cell firing in several forms of neocortical activity. Fast-spiking (FS) interneurons are potently self-inhibited by GABAergic autaptic transmission, allowing them to precisely control their own firing dynamics and timing. Here we show that in FS interneurons, high-frequency trains of action potentials can generate a delayed and prolonged GABAergic self-inhibition due to sustained asynchronous release at FS-cell autapses. Asynchronous release of GABA is simultaneously recorded in connected pyramidal (P) neurons. Asynchronous and synchronous autaptic release show differential presynaptic Ca(2+) sensitivity, suggesting that they rely on different Ca(2+) sensors and/or involve distinct pools of vesicles. In addition, asynchronous release is modulated by the endogenous Ca(2+) buffer parvalbumin. Functionally, asynchronous release decreases FS-cell spike reliability and reduces the ability of P neurons to integrate incoming stimuli into precise firing. Since each FS cell contacts many P neurons, asynchronous release from a single interneuron may desynchronize a large portion of the local network and disrupt cortical information processing.


Assuntos
Potenciais de Ação , Interneurônios/fisiologia , Neocórtex/fisiologia , Sinapses/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Cálcio/metabolismo , Interneurônios/metabolismo , Camundongos , Neocórtex/citologia , Neocórtex/metabolismo , Ratos
14.
Neuron ; 110(15): 2438-2454.e8, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35700736

RESUMO

GluN3A is an atypical glycine-binding subunit of NMDA receptors (NMDARs) whose actions in the brain are mostly unknown. Here, we show that the expression of GluN3A subunits controls the excitability of mouse adult cortical and amygdalar circuits via an unusual signaling mechanism involving the formation of excitatory glycine GluN1/GluN3A receptors (eGlyRs) and their tonic activation by extracellular glycine. eGlyRs are mostly extrasynaptic and reside in specific neuronal populations, including the principal cells of the basolateral amygdala (BLA) and SST-positive interneurons (SST-INs) of the neocortex. In the BLA, tonic eGlyR currents are sensitive to fear-conditioning protocols, are subject to neuromodulation by the dopaminergic system, and control the stability of fear memories. In the neocortex, eGlyRs control the in vivo spiking of SST-INs and the behavior-dependent modulation of cortical activity. GluN3A-containing eGlyRs thus represent a novel and widespread signaling modality in the adult brain, with attributes that strikingly depart from those of conventional NMDARs.


Assuntos
Tonsila do Cerebelo , Neocórtex , Receptores de Glicina , Receptores de N-Metil-D-Aspartato , Tonsila do Cerebelo/metabolismo , Animais , Córtex Cerebral/metabolismo , Glicina/metabolismo , Interneurônios/metabolismo , Camundongos , Neocórtex/metabolismo , Neurônios/metabolismo , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
15.
Cell Rep ; 40(8): 111202, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36001978

RESUMO

Perisomatic inhibition of pyramidal neurons (PNs) coordinates cortical network activity during sensory processing, and this role is mainly attributed to parvalbumin-expressing basket cells (BCs). However, cannabinoid receptor type 1 (CB1)-expressing interneurons are also BCs, but the connectivity and function of these elusive but prominent neocortical inhibitory neurons are unclear. We find that their connectivity pattern is visual area specific. Persistently active CB1 signaling suppresses GABA release from CB1 BCs in the medial secondary visual cortex (V2M), but not in the primary visual cortex (V1). Accordingly, in vivo, tonic CB1 signaling is responsible for higher but less coordinated PN activity in the V2M than in the V1. These differential firing dynamics in the V1 and V2M can be captured by a computational network model that incorporates visual-area-specific properties. Our results indicate a differential CB1-mediated mechanism controlling PN activity, suggesting an alternative connectivity scheme of a specific GABAergic circuit in different cortical areas.


Assuntos
Endocanabinoides , Neocórtex , Interneurônios/fisiologia , Neurônios/fisiologia , Células Piramidais/fisiologia , Receptor CB1 de Canabinoide , Ácido gama-Aminobutírico/fisiologia
16.
PLoS Biol ; 6(10): e246, 2008 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-18842068

RESUMO

Adult neurogenesis in the dentate gyrus plays a critical role in hippocampus-dependent spatial learning. It remains unknown, however, how new neurons become functionally integrated into spatial circuits and contribute to hippocampus-mediated forms of learning and memory. To investigate these issues, we used a mouse model in which the differentiation of adult-generated dentate gyrus neurons can be anticipated by conditionally expressing the pro-differentiative gene PC3 (Tis21/BTG2) in nestin-positive progenitor cells. In contrast to previous studies that affected the number of newly generated neurons, this strategy selectively changes their timing of differentiation. New, adult-generated dentate gyrus progenitors, in which the PC3 transgene was expressed, showed accelerated differentiation and significantly reduced dendritic arborization and spine density. Functionally, this genetic manipulation specifically affected different hippocampus-dependent learning and memory tasks, including contextual fear conditioning, and selectively reduced synaptic plasticity in the dentate gyrus. Morphological and functional analyses of hippocampal neurons at different stages of differentiation, following transgene activation within defined time-windows, revealed that the new, adult-generated neurons up to 3-4 weeks of age are required not only to acquire new spatial information but also to use previously consolidated memories. Thus, the correct unwinding of these key memory functions, which can be an expression of the ability of adult-generated neurons to link subsequent events in memory circuits, is critically dependent on the correct timing of the initial stages of neuron maturation and connection to existing circuits.


Assuntos
Diferenciação Celular/fisiologia , Hipocampo/citologia , Memória , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Animais , Genes Supressores de Tumor , Hipocampo/fisiologia , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Animais , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nestina , Neurônios/fisiologia , Percepção Espacial/fisiologia , Fatores de Tempo , Proteínas Supressoras de Tumor
17.
Neural Plast ; 2011: 976856, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21785736

RESUMO

Cortical structures of the adult mammalian brain are characterized by a spectacular diversity of inhibitory interneurons, which use GABA as neurotransmitter. GABAergic neurotransmission is fundamental for integrating and filtering incoming information and dictating postsynaptic neuronal spike timing, therefore providing a tight temporal code used by each neuron, or ensemble of neurons, to perform sophisticated computational operations. However, the heterogeneity of cortical GABAergic cells is associated to equally diverse properties governing intrinsic excitability as well as strength, dynamic range, spatial extent, anatomical localization, and molecular components of inhibitory synaptic connections that they form with pyramidal neurons. Recent studies showed that similarly to their excitatory (glutamatergic) counterparts, also inhibitory synapses can undergo activity-dependent changes in their strength. Here, some aspects related to plasticity and modulation of adult cortical and hippocampal GABAergic synaptic transmission will be reviewed, aiming at providing a fresh perspective towards the elucidation of the role played by specific cellular elements of cortical microcircuits during both physiological and pathological operations.


Assuntos
Córtex Cerebral/fisiologia , Interneurônios/fisiologia , Plasticidade Neuronal , Ácido gama-Aminobutírico/fisiologia , Potenciais de Ação , Adulto , Animais , Moduladores de Receptores de Canabinoides/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Colecistocinina/fisiologia , Hipocampo/citologia , Hipocampo/fisiologia , Humanos , Interneurônios/classificação , Mamíferos/fisiologia , Transtornos Mentais/metabolismo , Transtornos Mentais/fisiopatologia , Proteínas do Tecido Nervoso/fisiologia , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Receptores de Canabinoides/fisiologia , Receptores de GABA/fisiologia , Transmissão Sináptica/fisiologia
18.
Neuron ; 49(1): 119-30, 2006 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-16387644

RESUMO

In vivo studies suggest that precise firing of neurons is important for correct sensory representation. Principal neocortical neurons fire imprecisely when repeatedly activated by fixed sensory stimuli or current depolarizations. Here we show that in contrast to pyramidal neurons, firing in neocortical GABAergic fast-spiking (FS) interneurons is quite precise. FS interneurons are self-innervated by powerful GABAergic autaptic connections reliably activated after each spike, suggesting that autapses strongly regulate FS-cell spike timing. Indeed, blockade of autaptic transmission degraded temporal precision in multiple ways. Under these conditions, realistic dynamic-clamp hyperpolarizing autapses restored precision of spike timing, even in the presence of synaptic noise. Furthermore, firing precision was increased in pyramidal neurons by artificial GABAergic autaptic conductances, suggesting that tightly coupled synaptic feedback inhibition regulates spike timing in principal cells. Thus, well-timed inhibition, whether autaptic or synaptic, facilitates precise spike timing and promotes synchronized cortical network oscillations relevant to several behaviors.


Assuntos
Potenciais de Ação , Interneurônios/fisiologia , Neocórtex/fisiologia , Inibição Neural/fisiologia , Tempo de Reação , Transmissão Sináptica/fisiologia , Adaptação Fisiológica , Animais , Artefatos , Condutividade Elétrica , Eletrofisiologia , Neocórtex/citologia , Células Piramidais/fisiologia , Ratos , Ratos Sprague-Dawley , Sinapses/fisiologia , Ácido gama-Aminobutírico/metabolismo
19.
Nature ; 431(7006): 312-6, 2004 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-15372034

RESUMO

Neocortical GABA-containing interneurons form complex functional networks responsible for feedforward and feedback inhibition and for the generation of cortical oscillations associated with several behavioural functions. We previously reported that fast-spiking (FS), but not low-threshold-spiking (LTS), neocortical interneurons from rats generate a fast and precise self-inhibition mediated by inhibitory autaptic transmission. Here we show that LTS cells possess a different form of self-inhibition. LTS, but not FS, interneurons undergo a prominent hyperpolarization mediated by an increased K+-channel conductance. This self-induced inhibition lasts for many minutes, is dependent on an increase in intracellular [Ca2+] and is blocked by the cannabinoid receptor antagonist AM251, indicating that it is mediated by the autocrine release of endogenous cannabinoids. Endocannabinoid-mediated slow self-inhibition represents a powerful and long-lasting mechanism that alters the intrinsic excitability of LTS neurons, which selectively target the major site of excitatory connections onto pyramidal neurons; that is, their dendrites. Thus, modulation of LTS networks after their sustained firing will lead to long-lasting changes of glutamate-mediated synaptic strength in pyramidal neurons, with consequences during normal and pathophysiological cortical network activities.


Assuntos
Moduladores de Receptores de Canabinoides/farmacologia , Endocanabinoides , Interneurônios/efeitos dos fármacos , Interneurônios/fisiologia , Neocórtex/citologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Eletrofisiologia , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Neocórtex/efeitos dos fármacos , Neocórtex/fisiologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Ratos , Ratos Sprague-Dawley
20.
Cortex ; 132: 258-280, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33007640

RESUMO

The neocortex plays a crucial role in all basic and abstract cognitive functions. Conscious mental processes are achieved through a correct flow of information within and across neocortical networks, whose particular activity state results from a tight balance between excitation and inhibition. The proper equilibrium between these indissoluble forces is operated with multiscale organization: along the dendro-somatic axis of single neurons and at the network level. Fast synaptic inhibition is assured by a multitude of inhibitory interneurons. During cortical activities, these cells operate a finely tuned division of labor that is epitomized by their detailed connectivity scheme. Recent results combining the use of mouse genetics, cutting-edge optical and neurophysiological approaches have highlighted the role of fast synaptic inhibition in driving cognition-related activity through a canonical cortical circuit, involving several major interneuron subtypes and principal neurons. Here we detail the organization of this cortical blueprint and we highlight the crucial role played by different neuron types in fundamental cortical computations. In addition, we argue that this canonical circuit is prone to many variations on the theme, depending on the resolution of the classification of neuronal types, and the cortical area investigated. Finally, we discuss how specific alterations of distinct inhibitory circuits can underlie several devastating brain diseases.


Assuntos
Neocórtex , Animais , Inibição Psicológica , Interneurônios , Camundongos , Inibição Neural , Neurônios , Neurofisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA