Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Chemistry ; 25(26): 6542-6552, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30786063

RESUMO

2-Iminopyrroles [HtBu L, 4-tert-butyl phenyl(pyrrol-2-ylmethylene)amine] are non-fluorescent π systems. However, they display blue fluorescence after deprotonation with alkali metal bases in the solid state and in solution at room temperature. In the solid state, the alkali metal 2-imino pyrrolates, M(tBu L), aggregate to dimers, [M(tBu L)(NCR)]2 (M=Li, R=CH3 , CH(CH3 )CNH2 ), or polymers, [M(tBu L)]n (M=Na, K). In solution (solv=CH3 CN, DMSO, THF, and toluene), solvated, uncharged monomeric species M(tBu L)(solv)m with N,N'-chelated alkali metal ions are present. Due to the electron-rich pyrrolate and the electron-poor arylimino moiety, the M(tBu L) chromophore possesses a low-energy intraligand charge-transfer (ILCT) excited state. The chelated alkali cations rigidify the chromophore, restricting intramolecular motions (RIM) by the chelation-enhanced fluorescence (CHEF) effect in solution and, consequently, switch-on a blue fluorescence emission.

2.
Chemistry ; 25(35): 8313-8320, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-30939219

RESUMO

Oxidative chemical vapour deposition of (5,15-diphenylporphyrinato)nickel(II) (NiDPP) with iron(III) chloride as oxidant yielded a conjugated poly(metalloporphyrin) as a highly coloured thin film, which is potentially useful for optoelectronic applications. This study clarified the reactive sites of the porphyrin monomer NiDPP by HRMS, UV/Vis/NIR spectroscopy, cyclic voltammetry and EPR spectroscopy in combination with quantum chemical calculations. Unsubstituted meso positions are essential for successful polymerisation, as demonstrated by varying the porphyrin meso substituent pattern from di- to tri- and tetraphenyl substitution. DFT calculations support the proposed radical oxidative coupling mechanism and explain the regioselectivity of the C-C coupling processes. Depositing the conjugated polymer on glass slides and on thermoplastic transparent polyethylene naphthalate demonstrated the suitability of the porphyrin material for flexible optoelectronic devices.

3.
Chemistry ; 23(33): 7920-7931, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28383155

RESUMO

Reversing the metal-to-ligand charge transfer (3 MLCT)/metal-centered (3 MC) excited state order in iron(II) complexes is a challenging objective, yet would finally result in long-sought luminescent transition-metal complexes with an earth-abundant central ion. One approach to achieve this goal is based on low-energy charge-transfer absorptions in combination with a strong ligand field. Coordinating electron-rich and electron-poor tridentate oligopyridine ligands with large bite angles at iron(II) enables both low-energy MLCT absorption bands around 590 nm and a strong ligand field. Variations of the electron-rich ligand by introducing longer alkyl substituents destabilizes the iron(II) complex towards ligand substitution reactions while hardly affecting the optical properties. On the other hand, N-deprotonation of the ligand backbone is feasible and reversible, yielding deep-green complexes with charge-transfer bands extending into the near-IR region. Time-dependent density functional theory calculations assign these absorption bands to transitions with dipole-allowed ligand-to-ligand charge transfer character. This unique geometric and electronic situation establishes a further regulating screw to increase the energy gap between potentially emitting charge-transfer states and the non-radiative ligand field states of iron(II) dyes.

4.
Inorg Chem ; 55(19): 9653-9662, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27622744

RESUMO

The bimetallic copper(I) complex Cu2L2 (cis-1) is formed with high diasteroselectivity from [Cu(NCCH3)4][BF4] and HL (4-tert-butyl phenyl(pyrrolato-2-yl-methylene)amine) in a kinetically controlled reaction. cis-1 features a rather short Cu···Cu distance of 2.4756(6) Å and is weakly emissive at room temperature in solution. Oxidatively triggered disproportionation of cis-1 yields elemental copper and the mononuclear copper(II) complex CuL2 (trans-2). One-electron reduction of trans-2 gives cuprate [2]- with a bent bis(pyrrolato) coordinated copper(I) entity. The imine donor atoms of [2]- can insert an additional copper(I) ion giving exclusively the bimetallic complex cis-1 closing the oxidation-elimination-reduction-insertion cycle.

5.
Sci Rep ; 13(1): 1340, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36693937

RESUMO

Taxis is ubiquitous in biological and physical chemistry systems as a response to various external stimulations. We prepared aqueous droplets containing Belousov-Zhabotinsky (BZ) solutions suspended on an oleic acid oil phase subject to DC electric field and found that these BZ droplets undergo chemically driven translational motion towards the negative electrode under DC electric field. This electrotaxis phenomenon originates from the field-induced inhomogeneous distribution of reactants, in particular Br[Formula: see text] ions, and consequently the biased location of the leading centers towards the positive electrode. We define the 'leading center' (LC) as a specific location within the droplet where the BZ chemical wave (target pattern) is initiated. The chemical wave generated from the LC propagates passing the droplet center of mass and creates a gradient of interfacial tension when reaching the droplet-oil interface on the other side, resulting in a momentum exchange between the droplet and oil phases which drives the droplet motion in the direction of the electric field. A greater electric field strength renders a more substantial electrotaxis effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA