RESUMO
BACKGROUND: Several PD-1 antibodies approved as anti-cancer therapies work by blocking the interaction of PD-1 with its ligand PD-L1, thus restoring anti-cancer T cell activities. These PD-1 antibodies lack inter-species cross-reactivity, necessitating surrogate antibodies for preclinical studies, which may limit the predictability and translatability of the studies. RESULTS: To overcome this limitation, we have developed an inter-species cross-reactive PD-1 antibody, GNUV201, by utilizing an enhanced diversity mouse platform (SHINE MOUSE™). GNUV201 equally binds to human PD-1 and mouse PD-1, equally inhibits the binding of human PD-1/PD-L1 and mouse PD-1/PD-L1, and effectively suppresses tumor growth in syngeneic mouse models. The epitope of GNUV201 mapped to the "FG loop" of hPD-1, distinct from those of Keytruda® ("C'D loop") and Opdivo® (N-term). Notably, the structural feature where the protruding epitope loop fits into GNUV201's binding pocket supports the enhanced binding affinity due to slower dissociation (8.7 times slower than Keytruda®). Furthermore, GNUV201 shows a stronger binding affinity at pH 6.0 (5.6 times strong than at pH 7.4), which mimics the hypoxic and acidic tumor microenvironment (TME). This phenomenon is not observed with marketed antibodies (Keytruda®, Opdivo®), implying that GNUV201 achieves more selective binding to and better occupancy on PD-1 in the TME. CONCLUSIONS: In summary, GNUV201 exhibited enhanced affinity for PD-1 with slow dissociation and preferential binding in TME-mimicking low pH. Human/monkey/mouse inter-species cross-reactivity of GNUV201 could enable more predictable and translatable efficacy and toxicity preclinical studies. These results suggest that GNUV201 could be an ideal antibody candidate for anti-cancer drug development.
Assuntos
Reações Cruzadas , Imunoterapia , Receptor de Morte Celular Programada 1 , Animais , Humanos , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Camundongos , Reações Cruzadas/imunologia , Imunoterapia/métodos , Concentração de Íons de Hidrogênio , Neoplasias/imunologia , Neoplasias/terapia , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Linhagem Celular Tumoral , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Epitopos/imunologia , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Camundongos Endogâmicos C57BL , FemininoRESUMO
Although the neuropilins were characterized as semaphorin receptors that regulate axon guidance, they also function as vascular endothelial growth factor (VEGF) receptors and contribute to the development of other tissues. Here, we assessed the role of NRP2 in mouse mammary gland development based on our observation that NRP2 is expressed preferentially in the terminal end buds of developing glands. A floxed NRP2 mouse was bred with an MMTV-Cre strain to generate a mammary gland-specific knockout of NRP2. MMTV-Cre;NRP2(loxP/loxP) mice exhibited significant defects in branching morphogenesis and ductal outgrowth compared with either littermate MMTV-Cre;NRP2(+/loxP) or MMTV-Cre mice. Mechanistic insight into this morphological defect was obtained from a mouse mammary cell line in which we observed that VEGF(165), an NRP2 ligand, induces branching morphogenesis in 3D cultures and that branching is dependent upon NRP2 as shown using shRNAs and a function-blocking antibody. Epithelial cells in the mouse mammary gland express VEGF, supporting the hypothesis that this NRP2 ligand contributes to mammary gland morphogenesis. Importantly, we demonstrate that VEGF and NRP2 activate focal adhesion kinase (FAK) and promote FAK-dependent branching morphogenesis in vitro. The significance of this mechanism is substantiated by our finding that FAK activation is diminished significantly in developing MMTV-Cre;NRP2(loxP/loxP) mammary glands compared with control glands. Together, our data reveal a VEGF/NRP2/FAK signaling axis that is important for branching morphogenesis and mammary gland development. In a broader context, our data support an emerging hypothesis that directional outgrowth and branching morphogenesis in a variety of tissues are influenced by signals that were identified initially for their role in axon guidance.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Glândulas Mamárias Animais/embriologia , Morfogênese/fisiologia , Neuropilina-2/metabolismo , Animais , Células Cultivadas , Células Epiteliais/metabolismo , Feminino , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Immunoblotting , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Neuropilina-2/genética , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
ErbB3, a member of the ErbB receptor family, is a potent mediator in the development and progression of cancer, and its activation plays pivotal roles in acquired resistance against anti-EGFR therapies and other standard-of-care therapies. Upon ligand (NRG1) binding, ErbB3 forms heterodimers with other ErbB proteins (i.e., EGFR and ErbB2), which allows activation of downstream PI3K/Akt signaling. In this study, we developed a fully human anti-ErbB3 antibody, named ISU104, as an anticancer agent. ISU104 binds potently and specifically to the domain 3 of ErbB3. The complex structure of ErbB3-domain 3::ISU104-Fab revealed that ISU104 binds to the NRG1 binding region of domain 3. The elucidated structure suggested that the binding of ISU104 to ErbB3 would hinder not only ligand binding but also the structural changes required for heterodimerization. Biochemical studies confirmed these predictions. ISU104 inhibited ligand binding, ligand-dependent heterodimerization and phosphorylation, and induced the internalization of ErbB3. As a result, downstream Akt phosphorylation and cell proliferation were inhibited. The anticancer efficacy of ISU104 was demonstrated in xenograft models of various cancers. In summary, a highly potent ErbB3 targeting antibody, ISU104, is suitable for clinical development.
Assuntos
Antineoplásicos/uso terapêutico , Receptor ErbB-3/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Proliferação de Células , Feminino , Humanos , Ligantes , CamundongosRESUMO
PURPOSE: The purpose of this study was to develop antagonists specific for the vascular endothelial growth factor receptor 1 (VEGFR1) and to investigate the effects of the antagonists on the VEGF-induced endothelial cell functions and tumor progression. EXPERIMENTAL DESIGN: Hexapeptides that inhibit binding of VEGFR1 and VEGF were identified through screening of synthetic peptide library. A selected peptide, anti-Flt1, was investigated for binding specificity with various receptors and ligand peptides. Effects of the peptide on proliferation, cell migration, and fibrin gel-based angiogenesis of endothelial cells were also investigated. The activity of anti-Flt1, in vivo, was evaluated for inhibition of tumor growth and metastasis in VEGF-secreting cancer cell-implanted mice by s.c. injections of the peptide. RESULTS: Here, we report on a short peptide that binds to VEGFR1 and prevents binding of VEGF. A hexapeptide, anti-Flt1 (Gly-Asn-Gln-Trp-Phe-Ile or GNQWFI), was identified from peptide libraries. The anti-Flt1 peptide shows specificity toward binding to VEGFR1 and it inhibits binding of VEGF, placental growth factor (PlGF), and VEGF/PlGF heterodimer to VEGFR1. This peptide does not inhibit the proliferation of endothelial cells induced by VEGF and VEGF/PlGF heterodimer but it effectively blocks VEGF-induced migration of endothelial cells and their capacity to form capillary-like structures on fibrin gel-based in vitro angiogenesis system. Furthermore, growth and metastasis of VEGF-secreting tumor cells were also significantly inhibited by s.c. injections of anti-Flt1 peptide in nude mice. Accordingly, VEGF-induced migration and capillary formation are mediated through VEGFR1, and these processes may play an important role in the growth and metastasis of VEGF-secreting tumors. CONCLUSIONS: We show that a peptide (anti-Flt1) specific for VEGFR1 inhibits growth and metastasis of tumor that secretes VEGF. The effects on endothelial cell functions, in vitro, indicate that the anticancer activity of anti-Flt1 peptide with reduced blood vessel density could also be due to the blocking of VEGFR1-mediated endothelial cell migration and tube formation. Although the effects of anti-Flt1 peptide still remain to be further characterized, the receptor 1-specific peptide antagonist, anti-Flt1, has potential as a therapeutic agent for various angiogenesis-related diseases, especially cancer.
Assuntos
Proliferação de Células/efeitos dos fármacos , Metástase Neoplásica/prevenção & controle , Oligopeptídeos/farmacologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Sequência de Aminoácidos , Inibidores da Angiogênese/farmacologia , Animais , Sítios de Ligação , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oligopeptídeos/metabolismo , Biblioteca de Peptídeos , Ligação Proteica/efeitos dos fármacos , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Fator A de Crescimento do Endotélio Vascular/isolamento & purificação , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/isolamento & purificação , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Alzheimer's disease (AD) is accompanied by the progressive deposition of beta-amyloid (Abeta) in both senile plaques and cerebral blood vessels, loss of central neurons, and vessel damage. Cerebral hypoperfusion is one of the major clinical features in AD and likely plays a critical role in its pathogenesis. In addition to its major roles in angiogenesis, vascular endothelial growth factor (VEGF) has neurotrophic and neuroprotective effects. VEGF is an ischemia-inducible factor and increased expression of VEGF often occurs in AD. Although the presence of VEGF immunoreactivity in the AD brain has been described previously, the direct interaction of VEGF with Abeta has not been established. Here, we show that VEGF is co-localized with Abeta plaques in the brains of patients with AD. In vitro experiments show that VEGF binds to Abeta with high affinity (K(D) approximate to 50 pM). VEGF is co-aggregated with Abeta without any apparent effect on the rate of aggregation, strongly binds to pre-aggregated Abeta, and is very slowly released from the co-aggregated complex. Continuous deposition of VEGF in the amyloid plaques most likely results in deficiency of available VEGF under hypoperfusion and, thus, may contribute to neurodegeneration and vascular dysfunction in the progression of AD.
Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Transtornos Cerebrovasculares/metabolismo , Placa Amiloide/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Idoso , Doença de Alzheimer/fisiopatologia , Encéfalo/irrigação sanguínea , Encéfalo/fisiopatologia , Artérias Cerebrais/metabolismo , Artérias Cerebrais/patologia , Artérias Cerebrais/fisiopatologia , Transtornos Cerebrovasculares/fisiopatologia , Humanos , Substâncias Macromoleculares , Neovascularização Fisiológica/fisiologia , Placa Amiloide/patologia , Ligação Proteica/fisiologiaRESUMO
High Gleason grade prostate carcinomas are aggressive, poorly differentiated tumors that exhibit diminished estrogen receptor beta (ERbeta) expression. We report that a key function of ERbeta and its specific ligand 5alpha-androstane-3beta,17beta-diol (3beta-adiol) is to maintain an epithelial phenotype and repress mesenchymal characteristics in prostate carcinoma. Stimuli (TGF-beta and hypoxia) that induce an epithelial-mesenchymal transition (EMT) diminish ERbeta expression, and loss of ERbeta is sufficient to promote an EMT. The mechanism involves ERbeta-mediated destabilization of HIF-1alpha and transcriptional repression of VEGF-A. The VEGF-A receptor neuropilin-1 drives the EMT by promoting Snail1 nuclear localization. Importantly, this mechanism is manifested in high Gleason grade cancers, which exhibit significantly more HIF-1alpha and VEGF expression, and Snail1 nuclear localization compared to low Gleason grade cancers.
Assuntos
Receptor beta de Estrogênio/uso terapêutico , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Neoplasias da Próstata/prevenção & controle , Fatores de Transcrição/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Receptor beta de Estrogênio/fisiologia , Humanos , Masculino , Mesoderma/citologia , Mesoderma/fisiologia , Neoplasias da Próstata/patologia , Fatores de Transcrição da Família Snail , Fator de Crescimento Transformador beta/fisiologiaRESUMO
The neuropilins-1 and -2 (NRP1 and NRP2) function as receptors for both the semaphorins and vascular endothelial growth factor. In addition to their contribution to the development of the nervous system, NRP1 and NRP2 have been implicated in angiogenesis and tumor progression. Given their importance to cancer and endothelial biology and their potential as therapeutic targets, an important issue that has not been addressed is the impact of metabolic stress conditions characteristic of the tumor microenvironment on their expression and function. Here, we demonstrate that hypoxia and nutrient deprivation stimulate the rapid loss of NRP1 expression in both endothelial and carcinoma cells. NRP2 expression, in contrast, is maintained under these conditions. The lysosomal inhibitors chloroquine and bafilomycin A1 prevented the loss of NRP1 expression, but proteasomal inhibitors had no effect. The hypothesis that NRP1 is degraded by autophagy is supported by the findings that its expression is lost rapidly in response to metabolic stress, prevented with 3-methyladenine and induced by rapamycin. Targeted depletion of NRP2 using small hairpin RNA revealed that NRP2 can function in the absence of NRP1 to mediate endothelial tube formation in hypoxia. Studies aimed at assessing NRP function and targeted therapy in cancer and angiogenesis should consider the impact of metabolic stress.
Assuntos
Regulação da Expressão Gênica , Lisossomos/metabolismo , Neuropilina-1/metabolismo , Neuropilina-2/metabolismo , Adenina/análogos & derivados , Adenina/metabolismo , Autofagia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Cloroquina/farmacologia , Meios de Cultura/metabolismo , Endotélio Vascular/citologia , Inibidores Enzimáticos/farmacologia , Humanos , Hipóxia , Macrolídeos/farmacologia , Sirolimo/farmacologiaRESUMO
Rheumatoid arthritis (RA) synoviocytes are resistant to apoptosis and exhibit a transformed phenotype, which might be caused by chronic exposure to genotoxic stimuli including reactive oxygen species and growth factors. In this study, we investigated the role of vascular endothelial growth factor165 (VEGF165), a potent angiogenic factor, and its receptor in the apoptosis of synoviocytes. We demonstrated here that neuropilin-1, rather than fms-like tyrosine kinase-1 and kinase insert domain-containing receptor, is the major VEGF165 receptor in the fibroblast-like synoviocytes. Neuropilin-1 was highly expressed in the lining layer, infiltrating leukocytes, and endothelial cells of rheumatoid synovium. The production of VEGF165, a ligand for neuropilin, was significantly higher in the RA synoviocytes than in the osteoarthritis synoviocytes. The ligation of recombinant VEGF165 to its receptor prevented the apoptosis of synoviocytes induced by serum starvation or sodium nitroprusside (SNP). VEGF165 rapidly triggered phospho-Akt and phospho-ERK activity and then induced Bcl-2 expression in the rheumatoid synoviocytes. The Akt or ERK inhibitor cancelled the protective effect of VEGF165 on SNP-induced synoviocyte apoptosis. Moreover, VEGF165 blocks SNP-induced Bcl-2 down-regulation as well as SNP-induced Bax translocation from the cytosol to the mitochondria. The down-regulation of the neuropilin-1 transcripts by short interfering RNA caused spontaneous synoviocyte apoptosis, which was associated with both the decrease in Bcl-2 expression and the increase in Bax translocation to mitochondria. Collectively, our data suggest that the interaction of VEGF165 with neuropilin-1 is crucial to the survival of rheumatoid synoviocytes and provide important implications for the abnormal growth of synoviocytes and therapeutic intervention in RA.
Assuntos
Apoptose/efeitos dos fármacos , Artrite Reumatoide/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Neuropilina-1/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Membrana Sinovial/patologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Proteína X Associada a bcl-2/metabolismo , Humanos , Neuropilina-1/metabolismo , Nitroprussiato/farmacologia , Osteoartrite/patologia , Ligação Proteica , Transporte Proteico/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Vascular endothelial growth factor (VEGF) has been suggested to play a critical role in the pathogenesis of rheumatoid arthritis (RA). We previously identified a novel RRKRRR hexapeptide that blocked the interaction between VEGF and its receptor through the screening of peptide libraries. In this study, we investigated whether anti-VEGF peptide RRKRRR (dRK6) could suppress collagen-induced arthritis (CIA) and regulate the activation of mononuclear cells of RA patients. A s.c. injection of dRK6 resulted in a dose-dependent decrease in the severity and incidence of CIA and suppressed synovial infiltration of inflammatory cells in DBA/1 mice. In these mice, the T cell responses to type II collagen (CII) in lymph node cells and circulating IgG Abs to CII were also dose-dependently inhibited by the peptides. In addition, VEGF directly increased the production of TNF-alpha and IL-6 from human PBMC. Synovial fluid mononuclear cells of RA patients showed a greater response to VEGF stimulation than the PBMC of healthy controls. The major cell types responding to VEGF were monocytes. Moreover, anti-VEGF dRK6 inhibited the VEGF-induced production of TNF-alpha and IL-6 from synovial fluid mononuclear cells of RA patients and decreased serum IL-6 levels in CIA mice. In summary, we observed first that dRK6 suppressed the ongoing paw inflammation in mice and blocked the VEGF-induced production of proinflammatory cytokines. These data suggest that dRK6 may be an effective strategy in the treatment of RA, and could be applied to modulate various chronic VEGF-dependent inflammatory diseases.