Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 22(17): 6866-6876, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35926215

RESUMO

Immune checkpoint blockade (ICB) therapy has revolutionized clinical oncology. However, the efficacy of ICB therapy is limited by the ineffective infiltration of T effector (Teff) cells to tumors and the immunosuppressive tumor microenvironment (TME). Here, we report a programmable tumor cells/Teff cells bispecific nano-immunoengager (NIE) that can circumvent these limitations to improve ICB therapy. The peptidic nanoparticles (NIE-NPs) bind tumor cell surface α3ß1 integrin and undergo in situ transformation into nanofibrillar network nanofibers (NIE-NFs). The prolonged retained nanofibrillar network at the TME captures Teff cells via the activatable α4ß1 integrin ligand and allows sustained release of resiquimod for immunomodulation. This bispecific NIE eliminates syngeneic 4T1 breast cancer and Lewis lung cancer models in mice, when given together with anti-PD-1 antibody. The in vivo structural transformation-based supramolecular bispecific NIE represents an innovative class of programmable receptor-mediated targeted immunotherapeutics to greatly enhance ICB therapy against cancers.


Assuntos
Neoplasias , Microambiente Tumoral , Animais , Imunomodulação , Integrinas , Camundongos , Neoplasias/tratamento farmacológico , Linfócitos T
2.
Biomaterials ; 277: 121078, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34461458

RESUMO

Non-small cell lung cancer (NSCLC) is the largest contributor to cancer mortality in the United States. Traditional chemotherapies are toxic and prone to the development of drug-resistance. Recently, several drug candidates were shown to induce lysosomal membrane permeabilization (LMP) in aggressive cancers. This has led to increased interest in lysosome dysregulation as a therapeutic target. However, approaches are needed to overcome two limitations of current lysosomal inhibitors: low specificity and potency. Here, we report the development of a transformable nanomaterial which is triggered to induce LMP of lysosomes in NSCLC. The nanomaterial consists of peptide amphiphiles, which self-assemble into nanoparticles, colocalize with the lysosome, and change conformation to nanofibrils due to lysosomal pH shift, which leads to the disruption of the lysosome, cell death, and cisplatin sensitization. We have found that this cell-penetrating transformable peptide nanoparticle (CPTNP) was cytotoxic to NSCLC cells in the low-micromolar range and it synergized cisplatin cytotoxicity four-fold. Moreover, we demonstrate CPTNP's promising antitumor effect in mouse xenograft models with limited toxicity when given in combination with low dose cisplatin chemotherapy. This is the first example of enhanced LMP via transformable peptide nanomaterial and offers a promising new strategy for cancer therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Peptídeos beta-Amiloides , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Cisplatino/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Lisossomos , Camundongos
3.
ACS Nano ; 15(1): 468-479, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33332957

RESUMO

To be clinically efficacious, nanotherapeutic drugs need to reach disease tissues reliably and cause limited side effects to normal organs and tissues. Here, we report a proof-of-concept study on the development of a smart peptidic nanophototherapeutic agent in line with clinical requirements, which can transform its morphology from nanoparticles to nanofibrils at the tumor sites. This in vivo receptor-mediated transformation process resulted in the formation and prolonged tumor-retention of highly ordered (J-aggregate type of photosensitizer) photosensitive peptide nanofibrillar network with greatly enhanced photothermal and photodynamic properties. This strategy of "multiple daily low-intensity laser radiation after each intravenous injection of significantly low-dose of nanomaterials" demonstrated effective elimination of 4T1 orthotopic syngeneic breast cancer in mice. The technology for nanomaterial modulation based on living cell surface receptors, in this case tumor-associated α3ß1 integrin, has great potential for clinical translation and is expected to improve the therapeutic efficacy against many cancers.


Assuntos
Nanopartículas , Fotoquimioterapia , Animais , Linhagem Celular Tumoral , Camundongos , Fármacos Fotossensibilizantes/farmacologia
4.
Nat Nanotechnol ; 15(2): 145-153, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31988501

RESUMO

Human epidermal growth factor receptor 2 (HER2) is overexpressed in >20% of breast cancers. Dimerization of HER2 receptors leads to the activation of downstream signals enabling the proliferation and survival of malignant phenotypes. Owing to the high expression levels of HER2, combination therapies are currently required for the treatment of HER2+ breast cancer. Here, we designed non-toxic transformable peptides that self-assemble into micelles under aqueous conditions but, on binding to HER2 on cancer cells, transform into nanofibrils that disrupt HER2 dimerization and subsequent downstream signalling events leading to apoptosis of cancer cells. The phase transformation of peptides enables specific HER2 targeting, and inhibition of HER2 dimerization blocks the expression of proliferation and survival genes in the nucleus. We demonstrate, in mouse xenofraft models, that these transformable peptides can be used as a monotherapy in the treatment of HER2+ breast cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Nanopartículas/química , Peptídeos/farmacologia , Receptor ErbB-2/metabolismo , Animais , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Peptídeos/química , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Oncotarget ; 10(52): 5468-5479, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31534631

RESUMO

Oral squamous cancers (OSC) are hallmarked by poor prognosis, delayed clinical detection, and a lack of defined, characteristic biomarkers. By screening combinatorial one-bead one-compound (OBOC) peptide libraries against oral squamous cancer cell lines, two cyclic peptide ligands, LLY12 and LLY13 were previously identified. These ligands are capable of specific binding to the oral cancer cell lines (MOK-101, HSC-3, SCC-4 and SCC-10a) but not non-cancerous keratinocytes, leukocytes, fibroblast, and endothelial cells. These two peptides were synthesized and evaluated for their binding property, cytotoxicity and cell permeability. In vitro studies indicate that both LLY12 and LLY13 were able to bind to oral cancer cells with high specificity but did not show any cytotoxicity against human keratinocytes. Biotinylated LLY13, in complex with streptavidin-alexa488 was taken up by live oral cancer cells, thus rendering it as an excellent candidate vehicle for efficient delivery of drug loaded-nanoparticles. In vivo and ex vivo near infra-red fluorescence imaging studies confirmed the in vivo targeting efficiency and specificity of LLY13 in oral cancer orthotopic murine xenograft model. In vivo studies also showed that LLY13 was able to accumulate in the OSC tumors and demarcate the tumor margins in orthotopic xenograft model. Together, our data supports LLY13 as a promising theranostic agent against OSC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA