Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Genome Res ; 31(9): 1602-1613, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34404692

RESUMO

Important clues about natural selection can be gleaned from discrepancies between the properties of segregating genetic variants and of mutations accumulated experimentally under minimal selection, provided the mutational process is the same in the laboratory as in nature. The base-substitution spectrum differs between C. elegans laboratory mutation accumulation (MA) experiments and the standing site-frequency spectrum, which has been argued to be in part owing to increased oxidative stress in the laboratory environment. Using genome sequence data from C. elegans MA lines carrying a mutation (mev-1) that increases the cellular titer of reactive oxygen species (ROS), leading to increased oxidative stress, we find the base-substitution spectrum is similar between mev-1, its wild-type progenitor (N2), and another set of MA lines derived from a different wild strain (PB306). Conversely, the rate of short insertions is greater in mev-1, consistent with studies in other organisms in which environmental stress increased the rate of insertion-deletion mutations. Further, the mutational properties of mononucleotide repeats in all strains are different from those of nonmononucleotide sequence, both for indels and base-substitutions, and whereas the nonmononucleotide spectra are fairly similar between MA lines and wild isolates, the mononucleotide spectra are very different, with a greater frequency of A:T → T:A transversions and an increased proportion of ±1-bp indels. The discrepancy in mutational spectra between laboratory MA experiments and natural variation is likely owing to a consistent (but unknown) effect of the laboratory environment that manifests itself via different modes of mutability and/or repair at mononucleotide loci.


Assuntos
Caenorhabditis elegans , Laboratórios , Alelos , Animais , Caenorhabditis elegans/genética , Mutação , Estresse Oxidativo/genética
2.
Mol Biol Evol ; 38(8): 3279-3293, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33871606

RESUMO

Mechanical properties such as substrate stiffness are a ubiquitous feature of a cell's environment. Many types of animal cells exhibit canonical phenotypic plasticity when grown on substrates of differing stiffness, in vitro and in vivo. Whether such plasticity is a multivariate optimum due to hundreds of millions of years of animal evolution, or instead is a compromise between conflicting selective demands, is unknown. We addressed these questions by means of experimental evolution of populations of mouse fibroblasts propagated for approximately 90 cell generations on soft or stiff substrates. The ancestral cells grow twice as fast on stiff substrate as on soft substrate and exhibit the canonical phenotypic plasticity. Soft-selected lines derived from a genetically diverse ancestral population increased growth rate on soft substrate to the ancestral level on stiff substrate and evolved the same multivariate phenotype. The pattern of plasticity in the soft-selected lines was opposite of the ancestral pattern, suggesting that reverse plasticity underlies the observed rapid evolution. Conversely, growth rate and phenotypes did not change in selected lines derived from clonal cells. Overall, our results suggest that the changes were the result of genetic evolution and not phenotypic plasticity per se. Whole-transcriptome analysis revealed consistent differentiation between ancestral and soft-selected populations, and that both emergent phenotypes and gene expression tended to revert in the soft-selected lines. However, the selected populations appear to have achieved the same phenotypic outcome by means of at least two distinct transcriptional architectures related to mechanotransduction and proliferation.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Fibroblastos/fisiologia , Seleção Genética , Animais , Expressão Gênica , Deriva Genética , Mecanotransdução Celular , Camundongos , Células NIH 3T3
3.
Mol Biol Evol ; 36(2): 239-251, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30445510

RESUMO

The mutational process varies at many levels, from within genomes to among taxa. Many mechanisms have been linked to variation in mutation, but understanding of the evolution of the mutational process is rudimentary. Physiological condition is often implicated as a source of variation in microbial mutation rate and may contribute to mutation rate variation in multicellular organisms.Deleterious mutations are an ubiquitous source of variation in condition. We test the hypothesis that the mutational process depends on the underlying mutation load in two groups of Caenorhabditis elegans mutation accumulation (MA) lines that differ in their starting mutation loads. "First-order MA" (O1MA) lines maintained under minimal selection for ∼250 generations were divided into high-fitness and low-fitness groups and sets of "second-order MA" (O2MA) lines derived from each O1MA line were maintained for ∼150 additional generations. Genomes of 48 O2MA lines and their progenitors were sequenced. There is significant variation among O2MA lines in base-substitution rate (µbs), but no effect of initial fitness; the indel rate is greater in high-fitness O2MA lines. Overall, µbs is positively correlated with recombination and proximity to short tandem repeats and negatively correlated with 10 bp and 1 kb GC content. However, probability of mutation is sufficiently predicted by the three-nucleotide motif alone. Approximately 90% of the variance in standing nucleotide variation is explained by mutability. Total mutation rate increased in the O2MA lines, as predicted by the "drift barrier" model of mutation rate evolution. These data, combined with experimental estimates of fitness, suggest that epistasis is synergistic.


Assuntos
Evolução Biológica , Caenorhabditis elegans/genética , Carga Genética , Mutação , Animais , Variações do Número de Cópias de DNA , Aptidão Genética , Repetições de Microssatélites , Recombinação Genética , Seleção Genética
4.
Heredity (Edinb) ; 120(1): 1-12, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29234171

RESUMO

Androdioecious Caenorhabditis have a high frequency of self-compatible hermaphrodites and a low frequency of males. The effects of mutations on male fitness are of interest for two reasons. First, when males are rare, selection on male-specific mutations is less efficient than in hermaphrodites. Second, males may present a larger mutational target than hermaphrodites because of the different ways in which fitness accrues in the two sexes. We report the first estimates of male-specific mutational effects in an androdioecious organism. The rate of male-specific inviable or sterile mutations is ⩽5 × 10-4/generation, below the rate at which males would be lost solely due to those kinds of mutations. The rate of mutational decay of male competitive fitness is ~ 0.17%/generation; that of hermaphrodite competitive fitness is ~ 0.11%/generation. The point estimate of ~ 1.5X faster rate of mutational decay of male fitness is nearly identical to the same ratio in Drosophila. Estimates of mutational variance (VM) for male mating success and competitive fitness are not significantly different from zero, whereas VM for hermaphrodite competitive fitness is similar to that of non-competitive fitness. Two independent estimates of the average selection coefficient against mutations affecting hermaphrodite competitive fitness agree to within two-fold, 0.33-0.5%.


Assuntos
Caenorhabditis elegans/genética , Aptidão Genética/genética , Organismos Hermafroditas/genética , Mutação , Animais , Caenorhabditis elegans/fisiologia , Comportamento Competitivo , Feminino , Organismos Hermafroditas/fisiologia , Masculino , Modelos Genéticos , Seleção Genética , Razão de Masculinidade , Comportamento Sexual Animal
5.
bioRxiv ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38979286

RESUMO

With within-species genetic diversity estimates that span the gambit of that seen across the entirety of animals, the Caenorhabditis genus of nematodes holds unique potential to provide insights into how population size and reproductive strategies influence gene and genome organization and evolution. Our study focuses on Caenorhabditis brenneri, currently known as one of the most genetically diverse nematodes within its genus and metazoan phyla. Here, we present a high-quality gapless genome assembly and annotation for C. brenneri, revealing a common nematode chromosome arrangement characterized by gene-dense central regions and repeat rich peripheral parts. Comparison of C. brenneri with other nematodes from the 'Elegans' group revealed conserved macrosynteny but a lack of microsynteny, characterized by frequent rearrangements and low correlation iof orthogroup sizes, indicative of high rates of gene turnover. We also assessed genome organization within corresponding syntenic blocks in selfing and outcrossing species, affirming that selfing species predominantly experience loss of both genes and intergenic DNA. Comparison of gene structures revealed strikingly small number of shared introns across species, yet consistent distributions of intron number and length, regardless of population size or reproductive mode, suggesting that their evolutionary dynamics are primarily reflective of functional constraints. Our study provides valuable insights into genome evolution and expands the nematode genome resources with the highly genetically diverse C. brenneri, facilitating research into various aspects of nematode biology and evolutionary processes.

6.
Genetics ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39139098

RESUMO

The distribution of fitness effects (DFE) of new mutations plays a central role in evolutionary biology. Estimates of the DFE from experimental Mutation Accumulation (MA) lines are compromised by the complete linkage disequilibrium (LD) between mutations in different lines. To reduce LD, we constructed two sets of recombinant inbred lines from a cross of two C. elegans MA lines. One set of lines ("RIAILs") was intercrossed for ten generations prior to ten generations of selfing; the second set of lines ("RILs") omitted the intercrossing. Residual LD in the RIAILs is much less than in the RILs, which affects the inferred DFE when the sets of lines are analyzed separately. The best-fit model estimated from all lines (RIAILs + RILs) infers a large fraction of mutations with positive effects (∼40%); models that constrain mutations to have negative effects fit much worse. The conclusion is the same using only the RILs. For the RIAILs, however, models that constrain mutations to have negative effects fit nearly as well as models that allow positive effects. When mutations in high LD are pooled into haplotypes, the inferred DFE becomes increasingly negative-skewed and leptokurtic. We conclude that the conventional wisdom - most mutations have effects near zero, a handful of mutations have effects that are substantially negative and mutations with positive effects are very rare - is likely correct, and that unless it can be shown otherwise, estimates of the DFE that infer a substantial fraction of mutations with positive effects are likely confounded by LD.

7.
Biol Lett ; 9(1): 20120334, 2013 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-22875817

RESUMO

Mutation rate often increases with environmental temperature, but establishing causality is complicated. Asymmetry between physiological stress and deviation from the optimal temperature means that temperature and stress are often confounded. We allowed mutations to accumulate in two species of Caenorhabditis for approximately 100 generations at 18°C and for approximately 165 generations at 26°C; 26°C is stressful for Caenorhabditis elegans but not for Caenorhabditis briggsae. We report mutation rates at a set of microsatellite loci and estimates of the per-generation decay of fitness (ΔM(w)), the genomic mutation rate for fitness (U) and the average effect of a new mutation (E[a]), assayed at both temperatures. In C. elegans, the microsatellite mutation rate is significantly greater at 26°C than at 18°C whereas in C. briggsae there is only a slight, non-significant increase in mutation rate at 26°C, consistent with stress-dependent mutation in C. elegans. The fitness data from both species qualitatively reinforce the microsatellite results. The fitness results of C. elegans are potentially complicated by selection but also suggest temperature-dependent mutation; the difference between the two species suggests that physiological stress plays a significant role in the mutational process.


Assuntos
Caenorhabditis/genética , Aptidão Genética , Taxa de Mutação , Animais , Caenorhabditis/fisiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Genótipo , Repetições de Microssatélites , Reação em Cadeia da Polimerase , Especificidade da Espécie , Estresse Fisiológico , Temperatura
8.
PLoS Genet ; 6(3): e1000877, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20300655

RESUMO

Genetic and developmental architecture may bias the mutationally available phenotypic spectrum. Although such asymmetries in the introduction of variation may influence possible evolutionary trajectories, we lack quantitative characterization of biases in mutationally inducible phenotypic variation, their genotype-dependence, and their underlying molecular and developmental causes. Here we quantify the mutationally accessible phenotypic spectrum of the vulval developmental system using mutation accumulation (MA) lines derived from four wild isolates of the nematodes Caenorhabditis elegans and C. briggsae. The results confirm that on average, spontaneous mutations degrade developmental precision, with MA lines showing a low, yet consistently increased, proportion of developmental defects and variants. This result indicates strong purifying selection acting to maintain an invariant vulval phenotype. Both developmental system and genotype significantly bias the spectrum of mutationally inducible phenotypic variants. First, irrespective of genotype, there is a developmental bias, such that certain phenotypic variants are commonly induced by MA, while others are very rarely or never induced. Second, we found that both the degree and spectrum of mutationally accessible phenotypic variation are genotype-dependent. Overall, C. briggsae MA lines exhibited a two-fold higher decline in precision than the C. elegans MA lines. Moreover, the propensity to generate specific developmental variants depended on the genetic background. We show that such genotype-specific developmental biases are likely due to cryptic quantitative variation in activities of underlying molecular cascades. This analysis allowed us to identify the mutationally most sensitive elements of the vulval developmental system, which may indicate axes of potential evolutionary variation. Consistent with this scenario, we found that evolutionary trends in the vulval system concern the phenotypic characters that are most easily affected by mutation. This study provides an empirical assessment of developmental bias and the evolution of mutationally accessible phenotypes and supports the notion that such bias may influence the directions of evolutionary change.


Assuntos
Evolução Biológica , Caenorhabditis/crescimento & desenvolvimento , Caenorhabditis/genética , Mutação/genética , Vulva/crescimento & desenvolvimento , Animais , Viés , Caenorhabditis/citologia , Caenorhabditis/isolamento & purificação , Linhagem da Célula , Feminino , Variação Genética , Genótipo , Fenótipo , Transdução de Sinais , Vulva/citologia , Proteínas ras/metabolismo
9.
G3 (Bethesda) ; 13(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36548954

RESUMO

Because of pleiotropy, mutations affect the expression and inheritance of multiple traits and, together with selection, are expected to shape standing genetic covariances between traits and eventual phenotypic divergence between populations. It is therefore important to find if the M matrix, describing mutational variances of each trait and covariances between traits, varies between genotypes. We here estimate the M matrix for six locomotion behavior traits in lines of two genotypes of the nematode Caenorhabditis elegans that accumulated mutations in a nearly neutral manner for 250 generations. We find significant mutational variance along at least one phenotypic dimension of the M matrices, but neither their size nor their orientation had detectable differences between genotypes. The number of generations of mutation accumulation, or the number of MA lines measured, was likely insufficient to sample enough mutations and detect potentially small differences between the two M matrices. We then tested if the M matrices were similar to one G matrix describing the standing genetic (co)variances of a population derived by the hybridization of several genotypes, including the two measured for M, and domesticated to a lab-defined environment for 140 generations. We found that the M and G were different because the genetic covariances caused by mutational pleiotropy in the two genotypes are smaller than those caused by linkage disequilibrium in the lab population. We further show that M matrices differed in their alignment with the lab population G matrix. If generalized to other founder genotypes of the lab population, these observations indicate that selection does not shape the evolution of the M matrix for locomotion behavior in the short-term of a few tens to hundreds of generations and suggests that the hybridization of C. elegans genotypes allows selection on new phenotypic dimensions of locomotion behavior.


Assuntos
Caenorhabditis elegans , Variação Genética , Animais , Caenorhabditis elegans/genética , Mutação , Fenótipo , Padrões de Herança , Seleção Genética , Modelos Genéticos
10.
Proc Natl Acad Sci U S A ; 106(38): 16310-4, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19805298

RESUMO

Knowledge of mutation processes is central to understanding virtually all evolutionary phenomena and the underlying nature of genetic disorders and cancers. However, the limitations of standard molecular mutation detection methods have historically precluded a genome-wide understanding of mutation rates and spectra in the nuclear genomes of multicellular organisms. We applied two high-throughput DNA sequencing technologies to identify and characterize hundreds of spontaneously arising base-substitution mutations in 10 Caenorhabditis elegans mutation-accumulation (MA)-line nuclear genomes. C. elegans mutation rate estimates were similar to previous calculations based on smaller numbers of mutations. Mutations were distributed uniformly within and among chromosomes and were not associated with recombination rate variation in the MA lines, suggesting that intragenomic variation in genetic hitchhiking and/or background selection are primarily responsible for the chromosomal distribution patterns of polymorphic nucleotides in C. elegans natural populations. A strong mutational bias from G/C to A/T nucleotides was detected in the MA lines, implicating oxidative DNA damage as a major endogenous mutagenic force in C. elegans. The observed mutational bias also suggests that the C. elegans nuclear genome cannot be at equilibrium because of mutation alone. Transversions dominate the spectrum of spontaneous mutations observed here, whereas transitions dominate patterns of allegedly neutral polymorphism in natural populations of C. elegans and many other animal species; this observation challenges the assumption that natural patterns of molecular variation in noncoding regions of the nuclear genome accurately reflect underlying mutation processes.


Assuntos
Caenorhabditis elegans/genética , Genoma Helmíntico/genética , Estudo de Associação Genômica Ampla/métodos , Mutação Puntual , Animais , Caenorhabditis elegans/classificação , DNA de Helmintos/química , DNA de Helmintos/genética , Variação Genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Especificidade da Espécie
11.
G3 (Bethesda) ; 12(5)2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35311992

RESUMO

Caenorhabditis elegans strains with the heat-sensitive mortal germline phenotype become progressively sterile over the course of a few tens of generations when maintained at temperatures near the upper range of C. elegans' tolerance. Mortal germline is transgenerationally heritable, and proximately under epigenetic control. Previous studies have suggested that mortal germline presents a relatively large mutational target and that mortal germline is not uncommon in natural populations of C. elegans. The mortal germline phenotype is not monolithic. Some strains exhibit a strong mortal germline phenotype, in which individuals invariably become sterile over a few generations, whereas other strains show a weaker (less penetrant) phenotype in which the onset of sterility is slower and more stochastic. We present results in which we (1) quantify the rate of mutation to the mortal germline phenotype and (2) quantify the frequency of mortal germline in a collection of 95 wild isolates. Over the course of ∼16,000 meioses, we detected one mutation to a strong mortal germline phenotype, resulting in a point estimate of the mutation rate UMrt≈ 6×10-5/genome/generation. We detected no mutations to a weak mortal germline phenotype. Six out of 95 wild isolates have a strong mortal germline phenotype, and although quantification of the weak mortal germline phenotype is inexact, the weak mortal germline phenotype is not rare in nature. We estimate a strength of selection against mutations conferring the strong mortal germline phenotype s¯≈0.1%, similar to selection against mutations affecting competitive fitness. The appreciable frequency of weak mortal germline variants in nature combined with the low mutation rate suggests that mortal germline may be maintained by balancing selection.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Células Germinativas , Temperatura Alta , Mutação , Fenótipo , Prevalência
12.
Genetics ; 220(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34791202

RESUMO

The distribution of fitness effects (DFE) for new mutations is one of the most theoretically important but difficult to estimate properties in population genetics. A crucial challenge to inferring the DFE from natural genetic variation is the sensitivity of the site frequency spectrum to factors like population size change, population substructure, genome structure, and nonrandom mating. Although inference methods aim to control for population size changes, the influence of nonrandom mating remains incompletely understood, despite being a common feature of many species. We report the DFE estimated from 326 genomes of Caenorhabditis elegans, a nematode roundworm with a high rate of self-fertilization. We evaluate the robustness of DFE inferences using simulated data that mimics the genomic structure and reproductive life history of C. elegans. Our observations demonstrate how the combined influence of self-fertilization, genome structure, and natural selection on linked sites can conspire to compromise estimates of the DFE from extant polymorphisms with existing methods. These factors together tend to bias inferences toward weakly deleterious mutations, making it challenging to have full confidence in the inferred DFE of new mutations as deduced from standing genetic variation in species like C. elegans. Improved methods for inferring the DFE are needed to appropriately handle strong linked selection and selfing. These results highlight the importance of understanding the combined effects of processes that can bias our interpretations of evolution in natural populations.


Assuntos
Caenorhabditis elegans , Animais
13.
Mol Biol Evol ; 26(3): 659-69, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19109257

RESUMO

Understanding the evolutionary processes responsible for shaping genetic variation within and between species requires separating the effects of mutation and selection. Differences between the patterns of genetic variation observed in nature and when mutations are allowed to accumulate in the relative absence of selection can reveal biases imposed by selection. We characterize the genetic variation at dinucleotide microsatellite repeats in four sets of 250-generation mutation accumulation (MA) lines, two in the species Caenorhabditis briggsae and two in Caenorhabditis elegans, and compare the mutational variation with the standing variation in those species. We also compare the mutational properties of microsatellites with the cumulative effects of mutations on fitness in the same lines. Integrated over the whole genome, we infer that the mutation rate of C. briggsae is about twice that of C. elegans, consistent with the cumulative mutational effects on fitness. The mutational spectrum (ratio of insertions to deletions) differs between repeat types and, in some cases, between species. The per-locus mutation rate is significantly positively correlated with the standing genetic variation at the same locus in both species, providing justification for the common practice of using the standing genetic variance as a surrogate for the mutation rate.


Assuntos
Caenorhabditis/genética , Variação Genética , Repetições de Microssatélites , Mutação , Animais , Caenorhabditis elegans/genética , Cinética , Seleção Genética
14.
Evolution ; 74(11): 2451-2464, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32989734

RESUMO

Metabolic disorders have a large heritable component, and have increased markedly in human populations over the past few generations. Genome-wide association studies of metabolic traits typically find a substantial unexplained fraction of total heritability, suggesting an important role of spontaneous mutation. An alternative explanation is that epigenetic effects contribute significantly to the heritable variation. Here, we report a study designed to quantify the cumulative effects of spontaneous mutation on adenosine metabolism in the nematode Caenorhabditis elegans, including both the activity and concentration of two metabolic enzymes and the standing pools of their associated metabolites. The only prior studies on the effects of mutation on metabolic enzyme activity, in Drosophila melanogaster, found that total enzyme activity presents a mutational target similar to that of morphological and life-history traits. However, those studies were not designed to account for short-term heritable effects. We find that the short-term heritable variance for most traits is of similar magnitude as the variance among MA lines. This result suggests that the potential heritable effects of epigenetic variation in metabolic disease warrant additional scrutiny.


Assuntos
Caenorhabditis elegans/genética , Variação Genética , Acúmulo de Mutações , Adenosina/metabolismo , Animais , Caenorhabditis elegans/enzimologia
15.
Curr Biol ; 29(11): R415-R417, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31163145

RESUMO

Environmental dependence of mutation in microbes is well-known, but most experiments have investigated contexts in which growth rate is greatly reduced below optimum. A new experiment shows mutational variability extends to contexts in which growth is near optimum.


Assuntos
Taxa de Mutação , Saccharomyces cerevisiae , Mutação
16.
Am Nat ; 172(2): 272-81, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18582167

RESUMO

The evolution of canalization, the robustness of the phenotype to environmental or genetic perturbation, has attracted considerable recent interest. A key step toward understanding the evolution of any phenotype is characterizing the rate at which mutation introduces genetic variation for the trait (the mutational variance, V(M)) and the average directional effects of mutations on the trait mean (DeltaM). In this study, the mutational parameters for canalization of productivity and body volume are quantified in two sets of mutation accumulation lines of nematodes in the genus Caenorhabditis and are compared with the mutational parameters for the traits themselves. Four results emerge: (1) spontaneous mutations consistently decanalize the phenotype; (2) the mutational parameters for decanalization, V(M) (quantified as mutational heritability) and DeltaM, are of the same order of magnitude as the same parameters for the traits themselves; (3) the mutational parameters for canalization are roughly correlated with the parameters for the traits themselves across taxa; and (4) there is no evidence that residual segregating overdominant loci contribute to the decay of canalization. These results suggest that canalization is readily evolvable and that any evolutionary factor that causes mutations to accumulate will, on average, decanalize the phenotype.


Assuntos
Meio Ambiente , Variação Genética , Mutação , Fenótipo , Rabditídios/genética , Animais , Tamanho Corporal , Genes Dominantes , Heterozigoto , Modelos Biológicos , Reprodução
17.
Genetics ; 176(3): 1653-61, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17483403

RESUMO

Mutational bias is a potentially important agent of evolution, but it is difficult to disentangle the effects of mutation from those of natural selection. Mutation-accumulation experiments, in which mutations are allowed to accumulate at very small population size, thus minimizing the efficiency of natural selection, are the best way to separate the effects of mutation from those of selection. Body size varies greatly among species of nematode in the family rhabditidae; mutational biases are both a potential cause and a consequence of that variation. We report data on the cumulative effects of mutations that affect body size in three species of rhabditid nematode that vary fivefold in adult size. Results are very consistent with previous studies of mutations underlying fitness in the same strains: two strains of Caenorhabditis briggsae decline in body size about twice as fast as two strains of C. elegans, with a concomitant higher point estimate of the genomic mutation rate; the confamilial Oscheius myriophila is intermediate. There is an overall mutational bias, such that mutations reduce size on average, but the bias appears consistent between species. The genetic correlation between mutations that affect size and those underlying fitness is large and positive, on average.


Assuntos
Evolução Biológica , Tamanho Corporal/genética , Mutação , Animais , Caenorhabditis , Modelos Genéticos , Rabditídios , Seleção Genética
18.
PLoS One ; 13(10): e0201507, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30339672

RESUMO

Organismal fitness is relevant in many contexts in biology. The most meaningful experimental measure of fitness is competitive fitness, when two or more entities (e.g., genotypes) are allowed to compete directly. In theory, competitive fitness is simple to measure: an experimental population is initiated with the different types in known proportions and allowed to evolve under experimental conditions to a predefined endpoint. In practice, there are several obstacles to obtaining robust estimates of competitive fitness in multicellular organisms, the most pervasive of which is simply the time it takes to count many individuals of different types from many replicate populations. Methods by which counting can be automated in high throughput are desirable, but for automated methods to be useful, the bias and technical variance associated with the method must be (a) known, and (b) sufficiently small relative to other sources of bias and variance to make the effort worthwhile. The nematode Caenorhabditis elegans is an important model organism, and the fitness effects of genotype and environmental conditions are often of interest. We report a comparison of three experimental methods of quantifying competitive fitness, in which wild-type strains are competed against GFP-marked competitors under standard laboratory conditions. Population samples were split into three replicates and counted (1) "by eye" from a saved image, (2) from the same image using CellProfiler image analysis software, and (3) with a large particle flow cytometer (a "worm sorter"). From 720 replicate samples, neither the frequency of wild-type worms nor the among-sample variance differed significantly between the three methods. CellProfiler and the worm sorter provide at least a tenfold increase in sample handling speed with little (if any) bias or increase in variance.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Aptidão Genética , Alelos , Animais , Automação , Evolução Biológica , Genótipo , Proteínas de Fluorescência Verde/metabolismo , Modelos Biológicos , Modelos Estatísticos , Reprodutibilidade dos Testes , Software
19.
Front Mol Biosci ; 5: 69, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30109234

RESUMO

A fundamental issue in evolutionary systems biology is understanding the relationship between the topological architecture of a biological network, such as a metabolic network, and the evolution of the network. The rate at which an element in a metabolic network accumulates genetic variation via new mutations depends on both the size of the mutational target it presents and its robustness to mutational perturbation. Quantifying the relationship between topological properties of network elements and the mutability of those elements will facilitate understanding the variation in and evolution of networks at the level of populations and higher taxa. We report an investigation into the relationship between two topological properties of 29 metabolites in the C. elegans metabolic network and the sensitivity of those metabolites to the cumulative effects of spontaneous mutation. The correlations between measures of network centrality and mutability are not statistically significant, but several trends point toward a weak positive association between network centrality and mutational sensitivity. There is a small but significant negative association between the mutational correlation of a pair of metabolites (rM ) and the shortest path length between those metabolites. Positive association between the centrality of a metabolite and its mutational heritability is consistent with centrally-positioned metabolites presenting a larger mutational target than peripheral ones, and is inconsistent with centrality conferring mutational robustness, at least in toto. The weakness of the correlation between rM and the shortest path length between pairs of metabolites suggests that network locality is an important but not overwhelming factor governing mutational pleiotropy. These findings provide necessary background against which the effects of other evolutionary forces, most importantly natural selection, can be interpreted.

20.
Genetics ; 174(3): 1387-95, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16888328

RESUMO

It is often assumed that the mutation rate is an evolutionarily optimized property of a taxon. The relevant mutation rate is for mutations that affect fitness, U, but the strength of selection on the mutation rate depends on the average effect of a mutation. Determination of U is complicated by the possibility that mutational effects depend on the particular environmental context in which the organism exists. It has been suggested that the effects of deleterious mutations are typically magnified in stressful environments, but most studies confound genotype with environment, so it is unclear to what extent environmental specificity of mutations is specific to a particular starting genotype. We report a study designed to separate effects of species, genotype, and environment on the degradation of fitness resulting from new mutations. Mutations accumulated for >200 generations at 20 degrees in two strains of two species of nematodes that differ in thermal sensitivity. Caenorhabditis briggsae and C. elegans have similar demography at 20 degrees, but C. elegans suffers markedly reduced fitness at 25 degrees. We find little evidence that mutational properties differ depending on environmental conditions and mutational correlations between environments are close to those expected if effects were identical in both environments.


Assuntos
Caenorhabditis/genética , Caenorhabditis/fisiologia , Meio Ambiente , Genótipo , Mutação , Estresse Fisiológico , Animais , Especificidade da Espécie , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA