Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(28): 10317-22, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24982161

RESUMO

Complexin (Cpx) is a SNARE-binding protein that regulates neurotransmission by clamping spontaneous synaptic vesicle fusion in the absence of Ca(2+) influx while promoting evoked release in response to an action potential. Previous studies indicated Cpx may cross-link multiple SNARE complexes via a trans interaction to function as a fusion clamp. During Ca(2+) influx, Cpx is predicted to undergo a conformational switch and collapse onto a single SNARE complex in a cis-binding mode to activate vesicle release. To test this model in vivo, we performed structure-function studies of the Cpx protein in Drosophila. Using genetic rescue approaches with cpx mutants that disrupt SNARE cross-linking, we find that manipulations that are predicted to block formation of the trans SNARE array disrupt the clamping function of Cpx. Unexpectedly, these same mutants rescue action potential-triggered release, indicating trans-SNARE cross-linking by Cpx is not a prerequisite for triggering evoked fusion. In contrast, mutations that impair Cpx-mediated cis-SNARE interactions that are necessary for transition from an open to closed conformation fail to rescue evoked release defects in cpx mutants, although they clamp spontaneous release normally. Our in vivo genetic manipulations support several predictions made by the Cpx cross-linking model, but unexpected results suggest additional mechanisms are likely to exist that regulate Cpx's effects on SNARE-mediated fusion. Our findings also indicate that the inhibitory and activating functions of Cpx are genetically separable, and can be mapped to distinct molecular mechanisms that differentially regulate the SNARE fusion machinery.


Assuntos
Cálcio/metabolismo , Proteínas de Drosophila/metabolismo , Mutação , Proteínas do Tecido Nervoso/metabolismo , Proteínas SNARE/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas do Tecido Nervoso/genética , Proteínas SNARE/genética
2.
Cell Chem Biol ; 26(4): 584-592.e6, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30745239

RESUMO

Super-resolution microscopy requires that subcellular structures are labeled with bright and photostable fluorophores, especially for live-cell imaging. Organic fluorophores may help here as they can yield more photons-by orders of magnitude-than fluorescent proteins. To achieve molecular specificity with organic fluorophores in live cells, self-labeling proteins are often used, with HaloTags and SNAP-tags being the most common. However, how these two different tagging systems compare with each other is unclear, especially for stimulated emission depletion (STED) microscopy, which is limited to a small repertoire of fluorophores in living cells. Herein, we compare the two labeling approaches in confocal and STED imaging using various proteins and two model systems. Strikingly, we find that the fluorescent signal can be up to 9-fold higher with HaloTags than with SNAP-tags when using far-red rhodamine derivatives. This result demonstrates that the labeling strategy matters and can greatly influence the duration of super-resolution imaging.


Assuntos
Corantes Fluorescentes/análise , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Proteínas/análise , Rodaminas/análise , Animais , Drosophila , Proteínas de Fluorescência Verde/análise , Células HeLa , Humanos , Proteínas Recombinantes de Fusão/análise , Coloração e Rotulagem/métodos
3.
Nat Struct Mol Biol ; 18(8): 934-40, 2011 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-21785412

RESUMO

The crystal structure of complexin bound to a prefusion SNAREpin mimetic shows that the accessory helix extends away from the SNAREpin in an 'open' conformation, binding another SNAREpin and inhibiting its assembly, to clamp fusion. In contrast, the accessory helix in the postfusion complex parallels the SNARE complex in a 'closed' conformation. Here we use targeted mutations, FRET spectroscopy and a functional assay that reconstitutes Ca(2+)-triggered exocytosis to show that the conformational switch from open to closed in complexin is needed for synaptotagmin-Ca(2+) to trigger fusion. Triggering fusion requires the zippering of three crucial aspartate residues in the switch region (residues 64-68) of v-SNARE. Conformational switching in complexin is integral to clamp release and is probably triggered when its accessory helix is released from its trans-binding to the neighboring SNAREpin, allowing the v-SNARE to complete zippering and open a fusion pore.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas do Tecido Nervoso/química , Sinaptotagminas/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Humanos , Fusão de Membrana/fisiologia , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Estrutura Terciária de Proteína , Ratos , Proteína 25 Associada a Sinaptossoma/química , Proteína 25 Associada a Sinaptossoma/metabolismo , Sinaptotagminas/metabolismo , Sintaxina 1/química , Sintaxina 1/metabolismo , Proteína 2 Associada à Membrana da Vesícula/química , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Proteína 2 Associada à Membrana da Vesícula/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA