Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(D1): D808-D816, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37953350

RESUMO

The Eukaryotic Pathogen, Vector and Host Informatics Resource (VEuPathDB, https://veupathdb.org) is a Bioinformatics Resource Center funded by the National Institutes of Health with additional funding from the Wellcome Trust. VEuPathDB supports >600 organisms that comprise invertebrate vectors, eukaryotic pathogens (protists and fungi) and relevant free-living or non-pathogenic species or hosts. Since 2004, VEuPathDB has analyzed omics data from the public domain using contemporary bioinformatic workflows, including orthology predictions via OrthoMCL, and integrated the analysis results with analysis tools, visualizations, and advanced search capabilities. The unique data mining platform coupled with >3000 pre-analyzed data sets facilitates the exploration of pertinent omics data in support of hypothesis driven research. Comparisons are easily made across data sets, data types and organisms. A Galaxy workspace offers the opportunity for the analysis of private large-scale datasets and for porting to VEuPathDB for comparisons with integrated data. The MapVEu tool provides a platform for exploration of spatially resolved data such as vector surveillance and insecticide resistance monitoring. To address the growing body of omics data and advances in laboratory techniques, VEuPathDB has added several new data types, searches and features, improved the Galaxy workspace environment, redesigned the MapVEu interface and updated the infrastructure to accommodate these changes.


Assuntos
Biologia Computacional , Eucariotos , Animais , Biologia Computacional/métodos , Invertebrados , Bases de Dados Factuais
2.
BMC Infect Dis ; 22(1): 103, 2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093029

RESUMO

BACKGROUND: Group A Streptococcus (GAS) is a major human pathogen and an important cause of maternal and neonatal sepsis. Asymptomatic bacterial colonization is considered a necessary step towards sepsis. Intra-partum azithromycin may reduce GAS carriage. METHODS: A posthoc analysis of a double-blind, placebo-controlled randomized-trial was performed to determine the impact of 2 g oral dose of intra-partum azithromycin on maternal and neonatal GAS carriage and antibiotic resistance. Following screening, 829 mothers were randomized who delivered 843 babies. GAS was determined by obtaining samples from the maternal and newborn nasopharynx, maternal vaginal tract and breastmilk. Whole Genome Sequencing (WGS) of GAS isolates was performed using the Illumina Miseq platform. RESULTS: GAS carriage was lower in the nasopharynx of both mothers and babies and breast milk among participants in the azithromycin arm. No differences in GAS carriage were found between groups in the vaginal tract. The occurrence of azithromycin-resistant GAS was similar in both arms, except for a higher prevalence in the vaginal tract among women in the azithromycin arm. WGS revealed all macrolide-resistant vaginal tract isolates from the azithromycin arm were Streptococcus dysgalactiae subspecies equisimilis expressing Lancefield group A carbohydrate (SDSE(A)) harbouring macrolide resistant genes msr(D) and mef(A). Ten of the 45 GAS isolates (22.2%) were SDSE(A). CONCLUSIONS: Oral intra-partum azithromycin reduced GAS carriage among Gambian mothers and neonates however carriage in the maternal vaginal tract was not affected by the intervention due to azithromycin resistant SDSE(A). SDSE(A) resistance must be closely monitored to fully assess the public health impact of intrapartum azithromycin on GAS. Trial registration ClinicalTrials.gov Identifier NCT01800942.


Assuntos
Azitromicina , Portador Sadio , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Portador Sadio/tratamento farmacológico , Portador Sadio/epidemiologia , Feminino , Gâmbia/epidemiologia , Humanos , Lactente , Recém-Nascido , Streptococcus pyogenes
3.
BMC Med ; 18(1): 375, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33250058

RESUMO

BACKGROUND: Malaria is still a major global health burden, with more than 3.2 billion people in 91 countries remaining at risk of the disease. Accurately distinguishing malaria from other diseases, especially uncomplicated malaria (UM) from non-malarial infections (nMI), remains a challenge. Furthermore, the success of rapid diagnostic tests (RDTs) is threatened by Pfhrp2/3 deletions and decreased sensitivity at low parasitaemia. Analysis of haematological indices can be used to support the identification of possible malaria cases for further diagnosis, especially in travellers returning from endemic areas. As a new application for precision medicine, we aimed to evaluate machine learning (ML) approaches that can accurately classify nMI, UM, and severe malaria (SM) using haematological parameters. METHODS: We obtained haematological data from 2,207 participants collected in Ghana: nMI (n = 978), SM (n = 526), and UM (n = 703). Six different ML approaches were tested, to select the best approach. An artificial neural network (ANN) with three hidden layers was used for multi-classification of UM, SM, and uMI. Binary classifiers were developed to further identify the parameters that can distinguish UM or SM from nMI. Local interpretable model-agnostic explanations (LIME) were used to explain the binary classifiers. RESULTS: The multi-classification model had greater than 85% training and testing accuracy to distinguish clinical malaria from nMI. To distinguish UM from nMI, our approach identified platelet counts, red blood cell (RBC) counts, lymphocyte counts, and percentages as the top classifiers of UM with 0.801 test accuracy (AUC = 0.866 and F1 score = 0.747). To distinguish SM from nMI, the classifier had a test accuracy of 0.96 (AUC = 0.983 and F1 score = 0.944) with mean platelet volume and mean cell volume being the unique classifiers of SM. Random forest was used to confirm the classifications, and it showed that platelet and RBC counts were the major classifiers of UM, regardless of possible confounders such as patient age and sampling location. CONCLUSION: The study provides proof of concept methods that classify UM and SM from nMI, showing that the ML approach is a feasible tool for clinical decision support. In the future, ML approaches could be incorporated into clinical decision-support algorithms for the diagnosis of acute febrile illness and monitoring response to acute SM treatment particularly in endemic settings.


Assuntos
Aprendizado de Máquina/normas , Malária/sangue , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Resultado do Tratamento
4.
mSphere ; 8(1): e0046922, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36507654

RESUMO

Streptococcus pyogenes is a leading cause of human morbidity and mortality, especially in resource-limited settings. The development of a vaccine against S. pyogenes is a global health priority to reduce the burden of postinfection rheumatic heart disease. To support this, molecular characterization of circulating S. pyogenes isolates is needed. We performed whole-genome analyses of S. pyogenes isolates from skin and soft tissue infections in Sukuta, The Gambia, a low-income country (LIC) in West Africa where there is a high burden of such infections. To act as a comparator to these LIC isolates, skin infection isolates from Sheffield, United Kingdom (a high-income country [HIC]), were also sequenced. The LIC isolates from The Gambia were genetically more diverse (46 emm types in 107 isolates) than the HIC isolates from Sheffield (23 emm types in 142 isolates), with only 7 overlapping emm types. Other molecular markers were shared, including a high prevalence of the skin infection-associated emm pattern D and the variable fibronectin-collagen-T antigen (FCT) types FCT-3 and FCT-4. Fewer of the Gambian LIC isolates carried prophage-associated superantigens (64%) and DNases (26%) than did the Sheffield HIC isolates (99% and 95%, respectively). We also identified streptococcin genes unique to 36% of the Gambian LIC isolates and a higher prevalence (48%) of glucuronic acid utilization pathway genes in the Gambian LIC isolates than in the Sheffield HIC isolates (26%). Comparison to a wider collection of HIC and LIC isolate genomes supported our findings of differing emm diversity and prevalence of bacterial factors. Our study provides insight into the genetics of LIC isolates and how they compare to HIC isolates. IMPORTANCE The global burden of rheumatic heart disease (RHD) has triggered a World Health Organization response to drive forward development of a vaccine against the causative human pathogen Streptococcus pyogenes. This burden stems primarily from low- and middle-income settings where there are high levels of S. pyogenes skin and soft tissue infections, which can lead to RHD. Our study provides much needed whole-genome-based molecular characterization of isolates causing skin infections in Sukuta, The Gambia, a low-income country (LIC) in West Africa where infection and RHD rates are high. Although we identified a greater level of diversity in these LIC isolates than in isolates from Sheffield, United Kingdom (a high-income country), there were some shared features. There were also some features that differed by geographical region, warranting further investigation into their contribution to infection. Our study has also contributed data essential for the development of a vaccine that would target geographically relevant strains.


Assuntos
Cardiopatia Reumática , Infecções dos Tecidos Moles , Infecções Estreptocócicas , Humanos , Streptococcus pyogenes/genética , Infecções dos Tecidos Moles/epidemiologia , Infecções Estreptocócicas/microbiologia , Antígenos de Bactérias , Genômica
5.
Clin Microbiol Infect ; 29(3): 386.e1-386.e9, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36243352

RESUMO

OBJECTIVES: To define bacterial aetiology of neonatal sepsis and estimate the prevalence of neonatal infection from maternal genital tract bacterial carriage among mother-newborn pairs. METHODS: We carried out a cross-sectional study of newborns with clinical sepsis admitted to three hospitals in the Gambia neonatal wards. Neonatal blood cultures and maternal genital swabs were obtained at recruitment. We used whole-genome sequencing to explore vertical transmission for neonates with microbiologically confirmed bloodstream infection by comparing phenotypically-matched paired neonatal blood cultures and maternal genital tract bacterial isolates. RESULTS: We enrolled 203 maternal-newborn pairs. Two-thirds (67%; 137/203) of neonates presented with early-onset sepsis (days 0-6 after birth) of which 26% (36/137) were because of a clinically-significant bacterial pathogen. Blood culture isolates from newborns with early-onset sepsis because of Staphylococcus aureus (n = 5), Klebsiella pneumonia (n = 2), and Enterococcus faecalis (n = 1), phenotypically matched their maternal genital tract isolates. Pairwise single-nucleotide variants comparisons showed differences of 12 to 52 single-nucleotide variants only between maternal and newborn S. aureus isolates, presumably representing vertical transmission with a transmission rate of 14% (5/36). CONCLUSIONS: We found a low prevalence of vertical transmission of maternal genital tract colonization in maternal-newborn pairs for early-onset neonatal sepsis in the West African context. Identifying infection acquisition pathways among newborns is essential to prioritize preventive interventions, which could be targeted at the mother or infection control in the hospital environment, depending on the major pathways of transmission.


Assuntos
Doenças do Recém-Nascido , Sepse Neonatal , Sepse , Feminino , Humanos , Recém-Nascido , Gâmbia , Staphylococcus aureus , Estudos Transversais , Doenças do Recém-Nascido/etiologia , Doenças do Recém-Nascido/microbiologia , Sepse/epidemiologia , Bactérias , África Ocidental , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Genômica , Nucleotídeos
6.
Microbiol Spectr ; : e0382022, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37698406

RESUMO

Our overall understanding of the developmental biology of malaria parasites has been greatly enhanced by recent advances in transcriptomic analysis. However, most of these investigations rely on laboratory strains (LS) that were adapted into in vitro culture many years ago, and the transcriptomes of clinical isolates (CI) circulating in human populations have not been assessed. In this study, RNA-seq was used to compare the global transcriptome of mid-stage gametocytes derived from three short-term cultured CI, with gametocytes derived from the NF54 reference laboratory strain. The core transcriptome appeared to be consistent between CI- and LS-derived gametocyte preparations, but some important differences were also observed. A majority of gametocyte-specific genes (43/53) appear to have relatively higher expression in CI-derived gametocytes than in LS-derived gametocytes, but a K-means clustering analysis showed that genes involved in flagellum- and microtubule-based processes (movement/motility) were more abundant in both groups, albeit with some differences between them. In addition, gametocytes from one CI described as CI group II gametocytes (CI:GGII) showed gene expression variation in the form of reduced gametocyte-specific gene expression compared to the other two CI-derived gametocytes (CI gametocyte group I, CI:GGI), although the mixed developmental stages used in our study is a potential confounder, only partially mitigated by the inclusion of multiple replicates for each CI. Overall, our study suggests that there may be subtle differences in the gene expression profiles of mid-stage gametocytes from CI relative to the NF54 reference strain of Plasmodium falciparum. Thus, it is necessary to deploy gametocyte-producing clinical parasite isolates to fully understand the diversity of gene expression strategies that may occur during the sequestered development of parasite sexual stages. IMPORTANCE Maturing gametocytes of Plasmodium falciparum are known to sequester away from peripheral circulation into the bone marrow until they are mature. Blocking gametocyte sequestration can prevent malaria transmission from humans to mosquitoes, but most studies aim to understand gametocyte development utilizing long-term adapted laboratory lines instead of clinical isolates. This is a particular issue for our understanding of the sexual stages, which are known to decrease rapidly during adaptation to long-term culture, meaning that many LS are unable to produce transmissible gametocytes. Using RNA-seq, we investigated the global transcriptome of mid-stage gametocytes derived from three clinical isolates and a reference strain (NF54). This identified important differences in gene expression profiles between immature gametocytes of CI and the NF54 reference strain of P. falciparum, suggesting increased investment in gametocytogenesis in clinical isolates. Our transcriptomic data highlight the use of clinical isolates in studying the morphological, cellular features and molecular biology of gametocytes.

7.
Commun Med (Lond) ; 3(1): 79, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270610

RESUMO

BACKGROUND: This detailed genomic study characterised multi-drug resistant-Gram negative bacilli (MDR-GNB) carriage in neonates < 2 kg and paired mothers at a low-resource African hospital. METHODS: This cross-sectional cohort study was conducted at the neonatal referral unit in The Gambia with weekly neonatal skin and peri-anal sampling and paired maternal recto-vaginal swabs. Prospective bacteriological culture used MacConkey agar with species identification by API20E and API20NE. All GNB isolates underwent whole genome sequencing on Illumina Miseq platform. Multi-Locus Sequence Typing and SNP-distance analysis identified strain type and relatedness. RESULTS: 135 swabs from 34 neonates and 21 paired mothers, yielded 137 GNB isolates, of which 112 are high quality de novo assemblies. Neonatal MDR-GNB carriage prevalence is 41% (14/34) at admission with 85% (11/13) new acquisition by 7d. Multiple MDR and ESBL-GNB species are carried at different timepoints, most frequently K. pneumoniae and E. coli, with heterogeneous strain diversity and no evidence of clonality. 111 distinct antibiotic resistance genes are mostly beta lactamases (Bla-AMPH, Bla-PBP, CTX-M-15, Bla-TEM-105). 76% (16/21) and 62% (13/21) of mothers have recto-vaginal carriage of ≥1 MDR-GNB and ESBL-GNB respectively, mostly MDR-E. coli (76%, 16/21) and MDR-K. pneumoniae (24%, 5/21). Of 21 newborn-mother dyads, only one have genetically identical isolates (E. coli ST131 and K. pneumoniae ST3476). CONCLUSIONS: Gambian hospitalised neonates exhibit high MDR and ESBL-GNB carriage prevalence with acquisition between birth and 7d with limited evidence supporting mother to neonate transmission. Genomic studies in similar settings are required to further understand transmission and inform targeted surveillance and infection prevention policies.


Bacteria that are resistant to multiple antibiotics are an important cause of infection and death of newborns in low-resource countries, especially small or premature babies born in hospital settings. How these resistant bacteria are acquired on the skin and in the gut of newborns is not known, particularly whether they are commonly transferred from mothers. We studied the bacteria present in small Gambian newborns and their mothers to understand the type of bacteria, amount of antibiotic resistance, number of newborns and mothers affected and similarity of these bacteria between newborns and their mothers. We found that despite many newborns carrying these bacteria, they are different from those present in mothers. This suggests that the bacteria are acquired from the hospital environment. Our study highlights the importance of developing strategies to identify and reduce the presence of such bacteria in hospitals to reduce their acquisition by vulnerable hospitalised newborns.

8.
PLoS Negl Trop Dis ; 16(4): e0010300, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35442960

RESUMO

BACKGROUND: Animal African Trypanosomiasis (AAT) is one of the most economically important diseases affecting livestock productivity in sub-Saharan Africa. The disease is caused by a broad range of Trypanosoma spp., infecting both wild and domesticated animals through cyclical and mechanical transmission. This study aimed to characterize trypanosomes present in cattle at regular intervals over two years in an AAT endemic and a non-endemic region of Ghana. METHODOLOGY/PRINCIPAL FINDINGS: Groups of cattle at Accra and Adidome were selected based on their geographical location, tsetse fly density, prevalence of trypanosomiasis and the breed of cattle available. Blood for DNA extraction was collected at approximately four to five-week intervals over a two-year period. Trypanosome DNA were detected by a sensitive nested PCR targeting the tubulin gene array and massively parallel sequencing of barcoded amplicons. Analysis of the data was a semi-quantitative estimation of infection levels using read counts obtained from the sequencing as a proxy for infection levels. Majority of the cattle were infected with multiple species most of the time [190/259 (73%) at Adidome and 191/324 (59%) at Accra], with T. vivax being the most abundant. The level of infection and in particular T. vivax, was higher in Adidome, the location with a high density of tsetse flies. The infection level varied over the time course, the timings of this variation were not consistent and in Adidome it appeared to be independent of prophylactic treatment for trypanosome infection. Effect of gender or breed on infection levels was insignificant. CONCLUSIONS/SIGNIFICANCE: Most cattle were infected with low levels of several trypanosome species at both study sites, with T. vivax being the most abundant. The measurements of infection over time provided insight to the importance of the approach in identifying cattle that could suppress trypanosome infection over an extended time and may serve as reservoir.


Assuntos
Trypanosoma , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Bovinos , Gana/epidemiologia , Sequenciamento de Nucleotídeos em Larga Escala , Prevalência , Trypanosoma/genética , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/veterinária , Moscas Tsé-Tsé/genética
9.
Open Forum Infect Dis ; 6(7): ofz254, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31294045

RESUMO

BACKGROUND: Plasmodium falciparum uses a repertoire of merozoite-stage proteins for invasion of erythrocytes. Antibodies against some of these proteins halt the replication cycle of the parasite by preventing erythrocyte invasion and are implicated as contributors to protective immunity against malaria. METHODS: We assayed antibody reactivity against a panel of 9 recombinant antigens based on erythrocyte-binding antigen (EBA) and reticulocyte-like homolog (Rh) proteins in plasma from children with malaria and healthy adults residing in 3 endemic areas in Ghana using enzyme-linked immunosorbent assay. Purified immunoglobulin (Ig)G from adult plasma samples was also tested for invasion inhibition against 7 different P falciparum culture lines, including clinical isolates. RESULTS: Antibodies against the antigens increased in an age-dependent manner in children. Breadth of reactivity to the different antigens was strongly associated with in vitro parasite growth inhibitory activity of IgG purified from the adults. The strongest predictors of breadth of antibody reactivity were age and transmission intensity, and a combination of reactivities to Rh2, Rh4, and Rh5 correlated strongly with invasion inhibition. CONCLUSIONS: Growth inhibitory activity was significantly associated with breadth of antibody reactivity to merozoite antigens, encouraging the prospect of a multicomponent blood-stage vaccine.

10.
Front Genet ; 9: 457, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30337941

RESUMO

Background: Whole blood expression profiling is a mainstay for delineating differential diagnostic signatures of infection yet is subject to high variability that reduces power and complicates clinical usefulness. To date, confirmatory high confidence expression profiling signatures for clinical use remain uncertain. Here we have sought to evaluate the reproducibility and confirmatory nature of differential expression signatures, comprising molecular and cellular pathways, across multiple international clinical observational studies investigating children and adult whole blood transcriptome responses to tuberculosis (TB). Methods and findings: A systematic search and quality control assessment of gene expression repositories for human TB using whole blood resulted in 11 datasets with a total of 1073 patients from Africa, Europe, and South America. A non-parametric estimation of percentage of false prediction was used for meta-analysis of high confidence differential expression analysis. Deconvolution analysis was applied to infer changes in immune cell proportions and enrichment tests applied using pathway database resources. Meta-analysis identified high confidence differentially expressed genes, comprising 372 in adult active-TB versus latent-TB (LTBI), 332 in adult active-TB versus controls (CON), five in LTBI versus CON, and 415 in childhood active-TB versus LTBI. Notably, these confirmatory markers have low representation in published signatures for diagnosing TB. Pathway biology analysis of high confidence gene sets revealed dominant metabolic and innate-immune pathway signatures while suppressed signatures were enriched with adaptive signaling pathways and reduced proportions of T and B cells. Childhood TB showed uniquely strong inflammasome antagonist signature (IL1RN and ILR2), while adult TB patients exhibit a significant preponderance type I and type II IFN markers. Key limitations of the study include the paucity of data on potential confounders. Conclusion: Meta-analysis identified high confidence confirmatory immune-metabolic and cellular expression signatures across studies regardless of the population resource setting, HIV status and circulating endemic pathogens. Notably, previously identified diagnostic signature markers for TB show limited concordance with the confirmatory meta-analysis. Overall, our results support the use of the confirmatory expression signatures for guiding optimized diagnostic, prognostic, and therapeutic monitoring modalities in TB.

11.
Front Genet ; 9: 575, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30538723

RESUMO

Genomics and bioinformatics are increasingly contributing to our understanding of infectious diseases caused by bacterial pathogens such as Mycobacterium tuberculosis and parasites such as Plasmodium falciparum. This ranges from investigations of disease outbreaks and pathogenesis, host and pathogen genomic variation, and host immune evasion mechanisms to identification of potential diagnostic markers and vaccine targets. High throughput genomics data generated from pathogens and animal models can be combined with host genomics and patients' health records to give advice on treatment options as well as potential drug and vaccine interactions. However, despite accounting for the highest burden of infectious diseases, Africa has the lowest research output on infectious disease genomics. Here we review the contributions of genomics and bioinformatics to the management of infectious diseases of serious public health concern in Africa including tuberculosis (TB), dengue fever, malaria and filariasis. Furthermore, we discuss how genomics and bioinformatics can be applied to identify drug and vaccine targets. We conclude by identifying challenges to genomics research in Africa and highlighting how these can be overcome where possible.

12.
J Steroid Biochem Mol Biol ; 169: 152-163, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27155346

RESUMO

Infection remains an important cause of morbidity and mortality. Natural defenses to infection are mediated by intrinsic/innate and adaptive immune responses. While our understanding is considerable it is incomplete and emerging areas of research such as those related to the immune-metabolic axis are only beginning to be appreciated. There is increasing evidence showing a connection between immune signalling and the regulation of sterol and fatty acid metabolism. In particular, metabolic intermediates of cholesterol biosynthesis and its oxidized metabolites (oxysterols) have been shown to regulate adaptive immunity and inflammation and for innate immune signalling to regulate the dynamics of cholesterol synthesis and homeostasis. The side-chain oxidized oxysterols, 25-hydroxycholesterol (25HC) and vitamin D metabolites (vitamin D3 and vitamin D2), are now known to impart physiologically profound effects on immune responses. Macrophages play a frontline role in this process connecting immunity, infection and lipid biology, and collaterally are a central target for infection by a wide range of pathogens including viruses and bacteria, especially intracellular bacteria such as mycobacteria. Clinical manifestations of disease severity in the infected host are likely to pay tribute to perturbations of the metabolic-immune phenomena found in lymphocytes and myeloid cells. Historically and consistent with this notion, vitamin D based oxysterols have had a long association with promoting clinical improvements to patients infected with Mycobacterium tuberculosis. Hence understanding the role of early metabolic mediators of inflammatory responses to infection in particular oxysterols, will aid in the development of urgently needed host directed therapeutic and diagnostic design innovation to combat adverse infection outcomes and antibiotic resistance.


Assuntos
Colesterol/imunologia , Hidroxicolesteróis/imunologia , Sistema Imunitário , Infecções por Mycobacterium/imunologia , Oxisteróis/imunologia , Vitamina D/análogos & derivados , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Homeostase , Humanos , Imunidade Inata , Inflamação , Linfócitos/citologia , Macrófagos/citologia , Mycobacterium , Transdução de Sinais , Vitamina D/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA