Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 411(26): 6857-6866, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31420709

RESUMO

We show an alternative way to visualize time course NMR data without the application of multivariate data analysis, based on the temporal change of the metabolome of hazelnuts after mold infestation. Fresh hazelnuts were inoculated with eight different natural mold species and the growth was studied over a period of 14 days. The data were plotted in a color-coded scheme showing metabolic changes as a function of chemical shift, which we named signal pattern plot. This plot graphically displays alteration (trend) of a respected signal over time and allows visual interpretation in a simple manner. Changes are compared with a reference sample stored under identical conditions as the infected nuts. The plot allows, at a glance, the recognition of individual landmarks specific to a sample group as well as common features of the spectra. Each sample reveals an individual signal pattern. The plot facilitates the recognition of signals that belong to biological relevant metabolites. Betaine and five signals were identified that specifically changed upon mold infestation. Graphical abstract.


Assuntos
Corylus/metabolismo , Corylus/microbiologia , Metaboloma , Metabolômica/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Aspergillus niger/fisiologia , Betaína/análise , Betaína/metabolismo , Corylus/química , Fungos/fisiologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia
2.
J Agric Food Chem ; 66(18): 4660-4673, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29649863

RESUMO

Activity-guided fractionation in combination with sensory analytics, LC-TOF-MS, and 1D/2D-NMR spectroscopy enabled the identification of the bitter tasting diarylheptanoids asadanin, giffonin P, and the previously not reported ( E)-7,9,10,13-tetrahydroxy-1,7-bis(2-hydroxyphenyl)hept-9-en-11-one and 4,12,16-trihydroxy-2-oxatricyclo[13.3.1.13,7]-nonadeca-1(18),3,5,7(20),8,15,17-heptaen as well as the yet unknown astringent compounds 2-(3-hydroxy-2-oxoindolin-3-yl) acetic acid 3- O-6'-galactopyranosyl-2″-(2″oxoindolin-3″yl) acetate and 3-( O-ß-d-glycosyl) dioxindole-3-acetic acid in Cimiciato-infected hazelnuts exhibiting a bitter off-taste. Quantitative LC-MS/MS studies, followed by dose/activity considerations confirmed for the first time asadanin to be the key contributor to the bitter taste of Cimiciato-infected hazelnuts. Furthermore, quantitative studies demonstrated that neither the physical damage alone nor a general microbial infection is able to initiate a stress-induced asadanin generation, but most likely either specific Cimiciato-specific microorganisms associated with the bugs or specific chemical stimulants in the bugs' saliva is the cause triggering asadanin biosynthesis. Finally, also germination was found for the first time to activate diarylheptanoid biosynthesis, resulting in higher contents of bitter tasting phytochemicals and development of the bitter off-taste.


Assuntos
Corylus/química , Diarileptanoides/química , Aromatizantes/química , Nozes/química , Adulto , Cromatografia Líquida de Alta Pressão , Corylus/metabolismo , Diarileptanoides/metabolismo , Feminino , Aromatizantes/metabolismo , Humanos , Masculino , Nozes/metabolismo , Espectrometria de Massas em Tandem , Paladar , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA