Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Environ Sci (China) ; 139: 123-137, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105041

RESUMO

The fate of 2-nitrobenzaldehyde (2-NBA) is of interest in atmospheric chemistry as it is a semi-volatile organic compound with high photosensitivity. This study presents a quantum chemical study of the gas-phase reactions of 2-NBA photo-excitation and OH-oxidation in the absence and presence of small TiO2 clusters. To further understand the unknown photolysis mechanism, the photo-reaction pathways of ground singlet state and the lying excited triplet state of 2-NBA were investigated including the initial and subsequent reactions of proton transfer, direct CO, NO2, and HCO elimination routes in the presence of O2 and NO. Meanwhile, the OH-mediated degradation of 2-NBA proceeded via five H-extraction and six OH-addition channels by indirect mechanism, which follows a succession of reaction steps initiated by the formation of weakly stable intermediate complexes. The H-extraction from the -CHO group was the dominant pathway with a negative activation energy of -1.22 kcal/mol. The calculated rate coefficients at 200-600 K were close to the experimental data in literature within 308-352 K, and the kinetic negative temperature independence was found in both experimental literature and computational results. Interestingly, 2-NBA was favored to be captured onto small TiO2 clusters via six adsorption configurations formed via various combination of three types of bonds of Ti···O, Ti···C, and O···H between the molecularly adsorbed 2-NBA and TiO2 clusters. Comparison indicted that the chemisorptions of aldehyde oxygen have largest energies. The results suggested adsorption conformations have a respectable impact on the catalysis barrier. This study is significant for understanding the atmospheric chemistry of 2-nitrobenzaldehyde.


Assuntos
Oxigênio , Adsorção , Temperatura , Oxigênio/química , Catálise
2.
Chemphyschem ; 24(10): e202300021, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-36781393

RESUMO

The degradation and transformation of iodinated alkanes are crucial in the iodine chemical cycle in the marine boundary layer. In this study, MP2 and CCSD(T) methods were adopted to study the atmospheric transformation mechanism and degradation kinetic properties of CH3 I and CH3 CH2 I mediated by ⋅OH radical. The results show that there are three reaction mechanisms including H-abstraction, I-substitution and I-abstraction. The H-abstraction channel producing ⋅CH2 I and CH3 C ⋅ HI radicals are the main degradation pathways of CH3 I and CH3 CH2 I, respectively. By means of the variational transition state theory and small curvature tunnel correction method, the rate constants and branching ratios of each reaction are calculated in the temperature range of 200-600 K. The results show that the tunneling effect contributes more to the reaction at low temperatures. Theoretical reaction rate constants of CH3 I and CH3 CH2 I with ⋅OH are calculated to be 1.42×10-13 and 4.44×10-13  cm3 molecule-1 s-1 at T=298 K, respectively, which are in good agreement with the experimental values. The atmospheric lifetimes of CH3 I and CH3 CH2 I are evaluated to be 81.51 and 26.07 day, respectively. The subsequent evolution mechanism of ⋅CH2 I and CH3 C ⋅ HI in the presence of O2 , NO and HO2 indicates that HCHO, CH3 CHO, and I-atom are the main transformation end-products. This study provides a theoretical basis for insight into the diurnal conversion and environmental implications of iodinated alkanes.

3.
J Phys Chem A ; 127(25): 5402-5413, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37311006

RESUMO

Nitrous acid (HONO) is hazardous to the human respiratory system, and the hydrolysis of NO2 is the source of HONO. Hence, the investigation on the removal and transformation of HONO is urgently established. The effects of amide on the mechanism and kinetics of the formation of HONO with acetamide, formamide, methylformamide, urea, and its clusters of the catalyst were studied theoretically. The results show that amide and its small clusters reduce the energy barrier, the substituent improves the catalytic efficiency, and the catalytic effect order is dimer > monohydrate > monomer. Meanwhile, the clusters composed of nitric acid (HNO3), amides, and 1-6 water molecules were investigated in the amide-assisted nitrogen dioxide (NO2) hydrolysis reaction after HONO decomposes by combining the system sampling technique and density functional theory. The study on thermodynamics, intermolecular forces, optics properties of the clusters, as well as the influence of humidity, temperature, atmospheric pressure, and altitude shows that amide molecules promote the clustering and enhance the optical properties. The substituent facilitates the clustering of amide and nitric acid hydrate and lowers the humidity sensitivity of the clusters. The findings will help to control the atmospheric aerosol particle and then reduce the harm of poisonous organic chemicals on human health.

4.
J Am Chem Soc ; 144(43): 19942-19952, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36266241

RESUMO

Photoredox-mediated reversible deactivation radical polymerization (RDRP) is a promising method of precise synthesis of polymers with diverse structures and properties. However, its mechanism mainly based on the outer-sphere electron transfer (OSET) leads to stringent requirements for an efficient photocatalyst. In this paper, the zwitterionic organoboranes [L2B]+X- are prepared and applied in reversible addition-fragmentation chain transfer (RAFT) polymerization with the photoinduced ion-pair inner-sphere electron transfer (IP-ISET) mechanism. The ion-pair electron transfer mechanism and the formation of the radical [L2B]• are supported by electron paramagnetic resonance (EPR) radical capture experiments, 1H/11B NMR spectroscopy, spectroelectrochemical spectroscopy, transient absorption spectroscopy, theoretical calculation, and photoluminescence quenching experiments. Photoluminescence quenching experiments show that when [CTA]/[[L2B]+] ≥ 0.6, it is static quenching because of the in situ formation of [L2B]+[ZCS2]-, the real catalytic species. [L2B]+[C3H7SCS2]- is synthesized, and its photoluminescence lifetime is the same as the lifetime in the static quenching experiment, indicating the formation of [L2B]+[ZCS2]- in polymerization and the IP-ISET mechanism. The matrix-assisted laser desorption ionization time-of-flight mass (MALDI-TOF MS) spectra show that the structure of [C3H7SCS2] was incorporated into the polymer, indicating that ion-pair electron transfer occurs in catalytic species. The polymerization shows high catalytic activity at ppb catalyst loading, a wide range of monomers, excellent tolerance in the presence of 5 mol % phenolic inhibitors, and the synthesis of ultrahigh-molecular-weight polymers. This protocol with the IP-ISET mechanism exhibits a value in the development of new organic transformations and polymerization methods.


Assuntos
Elétrons , Polímeros , Polimerização , Polímeros/química , Catálise , Peso Molecular
5.
Phys Chem Chem Phys ; 24(43): 26668-26683, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36300380

RESUMO

Halogenated phenols are highly toxic chemicals with serious health risks, and the removal of these persistent environmental pollutants remains a challenge. Based on quantum chemistry calculations, the homogeneous/heterogeneous degradation mechanism and kinetics of C6X5OH (X = F, Cl, and Br) initiated by ˙OH radicals in the gas phase and TiO2 cluster surfaces are investigated in this work. Four ˙OH-addition and one proton-coupled electron-transfer (PCET) reaction channels for each halogenated phenol were found and the ˙OH-addition channels were more favorable than the PCET pathway without TiO2 clusters. At 296 K, the calculated total rate constant for ˙OH with C6F5OH in the atmosphere well agreed with the limited experimental data of (6.88 ± 1.37) × 10-12 cm3 molecule-1 s-1. The lifetimes of C6F5OH, C6Cl5OH, and C6Br5OH were about 12.04-12.86 h at 296 K, which favored their medium-range transport in the atmosphere. In the presence of (TiO2)n clusters (n = 4, 6, 8, 12, and 16), the PCET mechanism for hydrogen transfer reaction of C6F5OH with ˙OH radicals was changed from the previous four-electron/three-center into four-electron/two-center, which results in the PCET pathway becoming more favorable than the ˙OH-addition channels. Meanwhile, the heterogeneous degradation rate constants of C6F5OH were accelerated by more than 10 orders of magnitude within 200-430 K compared with those of the naked reaction. The effects of (TiO2)n cluster (n = 4, 6, 8, 12, and 16) size on the degradation rates were analyzed at 200-430 K, and the reaction on the (TiO2)8 cluster had a faster rate. The subsequent reactions including the bond cleavage of the benzene ring and O2 addition or abstraction were studied. This work provides new insights into halogenated aromatic atmospheric chemistry and nanoscale TiO2 photocatalysis in air or wastewater management.


Assuntos
Gases , Radical Hidroxila , Cinética , Radical Hidroxila/química , Fenóis
6.
Phys Chem Chem Phys ; 23(23): 13115-13127, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34075970

RESUMO

The transport and formation of fluorinated compounds are greatly significant due to their possible environmental risks. In this work, the ˙OH-mediated degradation of CF3CF2CF2CH2OH and CF3CHFCF2CH2OH in the presence of O2/NO/NO2 was studied by using density functional theory and the direct kinetic method. The formation mechanisms of perfluorocarboxylic/hydroperfluorocarboxylic acids (PFCAs/H-PFCAs), which were produced from the reactions of α-hydroxyperoxy radicals with NO/NO2 and the ensuing oxidation of α-hydroxyalkoxy radicals, were clarified and discussed. The roles of water and silica particles in the rate constants and ˙OH reaction mechanism with fluoroalcohols were investigated theoretically. The results showed that water and silica particles do not alter the reaction mechanism but obviously change the kinetic properties. Water could retard fluoroalcohol degradation by decreasing the rate constants by 3-5 orders of magnitude. However, the heterogeneous ˙OH-rate coefficients on the silica particle surfaces, including H4SiO4, H6Si2O7, and H12Si6O18, are larger than that of the naked reaction by 1.20-24.50 times. This finding suggested that these heterogeneous reactions may be responsible for the atmospheric loss of fluoroalcohols and the burden of PFCAs. In addition, fluoroalcohols could be exothermically trapped by H12Si6O18, H6Si2O7, and H4SiO4, in which the chemisorption on H12Si6O18 is stronger than that on H6Si2O7 or H4SiO4. The global warming potentials and radiative forcing of CF3CF2CF2CH2OH/CF3CHFCF2CH2OH were calculated to assess their contributions to the greenhouse effect. The toxicities of individual species were also estimated via the ECOSAR program and experimental measurements. This work enhances the understanding of the environmental formation of PFCAs and the transformation of fluoroalcohols.

7.
Phys Chem Chem Phys ; 22(15): 8109-8117, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32242551

RESUMO

Nitrogenous particle participation in the formation of clusters has attracted considerable attention from numerous researchers in recent years. Urea and thiourea (TU), as the common fertilizers in agriculture, have a significant impact on the atmospheric environment, whereas their implications have not been comprehended widely. Herein, we have used quantum calculations and ABCluster to explore the potential roles of thiourea and urea in particle formation events. A vital implication of these results is that they may contribute toward particle formation in marine environments and Asia region where the concentration of thiourea and urea has been increasing for a few years. Furthermore, the mechanisms of NO2 hydrolysis in the presence of thiourea and subsequent reactions were studied deeply. The results indicate that, although these reactions are not thermodynamically favorable at 298.15 K under homogeneous gas-phase conditions, thiourea may promote the hydrolysis of NO2 in heterogeneous environments containing very high concentrations of these molecules. The kinetics analysis shows that the rate constants of the hydrolysis reaction catalyzed by thiourea with N2O4-W and TU-W are about 2-5 and 1-2 orders of magnitude faster than those of the naked reaction. Thiourea nitrate and its aquo-complex were also studied, and the results suggest that the reaction produced an acid-base complex in which the trans- configuration is the final form for nitrous acid. We hope that these findings would inspire field measurements for detecting urea and thiourea in the troposphere.

8.
Phys Chem Chem Phys ; 21(31): 17378-17392, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31355843

RESUMO

The oxidation mechanisms and dynamics of 3-methoxy-3-methyl-1-butanol (3M3M1B) initiated by ˙OH radicals were assessed by the density functional theory and canonical variational transition state theory. The effects of ubiquitous water on the title reactions were analyzed by utilizing an implicit solvation model in the present system. The results suggested that aqueous water played a negative role in the ˙OH-initiated degradation of 3M3M1B with an increase in the Gibbs free barriers. Meanwhile, the barriers were almost independent when explicit water molecules were involved in the gaseous phase, which could reduce the rate constant by approximately 3 orders of magnitude. The kinetic calculations showed that the rate constants were smaller by about 15, 9, 8, and 8 orders of magnitude for hydroxyl-, ammonia-, formic acid-, and sulfur acid-participating reactions, respectively, than that from an unassisted reaction. The results indicated that water, hydroxyl, ammonia, formic acid, or sulfur acid could not facilitate the title reaction when performed in the atmosphere. The investigations of the subsequent oxidation processes of the alkyl radical CH3OC(CH3)2CH2C·HOH indicated that CH3OC(CH3)2CH2CHO was the most favorable product by eliminating an HO2˙ radical. Additionally, the HO2˙ radical could serve as a self-catalyst to affect the above reaction through a double proton transfer process. With the introduction of NO, CH3OC(CH3)2CH2COOH and HNO2 were found to be the main products, which may be regarded as the new source of atmospheric nitrous acid. In the NO2-rich environment, the peroxynitrate of CH3OC(CH3)2CH2CH(OONO2)OH could be formed via the reaction of the CH3OC(CH3)2CH2CH(OO˙)OH radical with NO2. The degradation mechanism of CH3OC(CH3)2CH2CH(OONO2)OH in the presence of water, ammonia, and methylamine was demonstrated, and it was shown that water, ammonia, and methylamine could promote the formation of nitric hydrate and nitrate aerosol. The main species detected in the experiment were confirmed by a theoretical study. The atmospheric lifetimes of 3M3M1B in the temperature range of 217-298 K and altitude of 0-12 km were within the range of 6.83-8.64 h. This study provides insights into the transformation of 3M3M1B in a complex environment.

9.
Chemphyschem ; 16(8): 1768-76, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-25872761

RESUMO

The mechanism and kinetics of the reactions of CF(3)COOCH(2)CH(3), CF(2)HCOOCH(3), and CF(3)COOCH(3) with Cl and OH radicals are studied using the B3LYP, MP2, BHandHLYP, and M06-2X methods with the 6-311G(d,p) basis set. The study is further refined by using the CCSD(T) and QCISD(T)/6-311++G(d,p) methods. Seven hydrogen-abstraction channels are found. All the rate constants, computed by a dual-level direct method with a small-curvature tunneling correction, are in good agreement with the experimental data. The tunneling effect is found to be important for the calculated rate constants in the low-temperature range. For the reaction of CF(3)COOCH(2)CH(3) +Cl, H-abstraction from the CH(2) group is found to be the dominant reaction channel. The standard enthalpies of formation for the species are also calculated. The Arrhenius expressions are fitted within 200-1000 K as kT(1) =8.4×10(-20) T (2.63) exp(381.28/T), kT(2) =2.95×10(-21) T (3.13) exp(-103.21/T), kT(3) =1.25×10(-23) T (3.37) exp(791.98/T), and kT(4) =4.53×10(-22) T (3.07) exp(465.00/T).

10.
J Phys Chem A ; 119(8): 1256-66, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25629584

RESUMO

Reactions of (CF3)2CFOCH3 and (CF3)2CFOCHO with hydroxyl radical and chlorine atom are studied at the B3LYP and BHandHLYP/6-311+G(d,p) levels along with the geometries and frequencies of all stationary points. This study is further refined by CCSD(T) and QCISD(T)/6-311+G(d,p) methods in the minimum energy paths. For the reaction (CF3)2CFOCH3 + OH, two hydrogen abstraction channels are found. The total rate constants for the reactions (CF3)2CFOCH3 + OH/Cl and (CF3)2CFOCHO + Cl are followed by means of the canonical variational transition state with the small-curvature tunneling correction. The comparison between the hydrogen abstraction rate constants by hydroxyl and chlorine atom is discussed. Calculated rate constants are in reasonable agreement with the available experiment data. The standard enthalpies of formation for the reactants, (CF3)2CFOCH3 and (CF3)2CFOCHO, and two products, (CF3)2CFOCH2 and (CF3)2CFOCO, are evaluated by a series of isodesmic reactions. The Arrhenius expressions for the title reactions are given as follows: k1= 1.08 × 10(-22) T(3.38) exp(-213.31/T), k2= 3.55 × 10(-22) T(3.61) exp(-240.26/T), and k3= 3.00 × 10 (-19) T(2.58) exp(-1294.34/T) cm(3) molecule(-1) s(-1).

11.
Chemosphere ; 291(Pt 1): 132705, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34710448

RESUMO

Atmospheric reaction mechanism and dynamics of phenol with nitrogen dioxide dimer were explored by the density functional theory and high-level quantum chemistry combined with statistical kinetic calculations within 220-800 K. The nitric acid and phenyl nitrite, the typical aerosol precursors, are the preponderant products because of the low formation free energy barrier (∼8.7 kcal/mol) and fast rate constants (∼10-15 cm3 molecule-1 s-1 at 298 K). Phenyl nitrate is the minor product and it would be also formed from the transformation of phenyl nitrite in NO2-rich environment. More importantly, kinetic effects and catalytic mechanism of a series of metal-free catalysts (H2O, NH3, CH3NH2, CH3NHCH3, HCOOH, and CH3COOH) on the title reaction were investigated at the same level. The results indicate that CH3NH2 and CH3NHCH3 can not only catalyze the title reaction by lowering the free energy barrier (about 1.4-6.5 kcal/mol) but also facilitate the production of organic ammonium nitrate via acting as a donor-acceptor of hydrogen. Conversely, the other species are non-catalytic upon the title reaction. The stabilization energies and donor-acceptor interactions in alkali-catalyzed product complexes were explored, which can provide new insights to the properties of aerosol precursors. Moreover, the lifetime of phenol determined by nitrogen dioxide dimer in the presence of dimethylamine may compete with that of determined by OH radicals, indicating that nitrogen dioxide dimer is responsible for the elimination of phenol in the polluted atmosphere. This work could help us thoroughly understand the removal of nitrogen oxides and phenol as well as new aerosol precursor aggregation in vehicle exhaust.


Assuntos
Dióxido de Nitrogênio , Fenol , Aerossóis , Catálise , Nitratos , Fenóis
12.
Sci Total Environ ; 699: 134190, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31670037

RESUMO

The initial reactions of organics with •OH are important to understand their transformations and fates in advanced oxidation processes in aqueous phase. Herein, the kinetics and mechanism of •OH-initiated degradation of ciprofloxacin (CIP), an antibiotic of fluoroquinolone class, are obtained using density functional and computational kinetics methods. All feasible mechanisms are considered, including H-abstraction, •OH-addition, and sequential electron proton transfer. Results showed that the H-abstraction is the dominant reaction pathway, and the product radicals P7H, P9H, and P10H are the dominating intermediates. The aqueous phase rate coefficients for the •OH-triggered reaction of ciprofloxacin are calculated from 273 K to 323 K to examine the temperature dependent effect, and the theoretical value of 6.07 × 109 M-1 s-1 at 298 K is close to the corresponding experimental data. Moreover, the intermediates P7H, P9H, and P10H could easily transform to several stable products in the presence of O2, HO2•, and •OH. The peroxy radical, which is generated from the incorporation of H-abstraction product radicals (P7H, P9H, and P10H) with O2, prefers to produce HO2• into the surrounding through direct concerted elimination rather than the indirect mechanism. In addition, the peroxy radical could react with HO2• via triplet and singlet routes, and the former is more favorable due to its smaller barrier compared with the latter. The hydroxyl-substituted CIP has higher activity than its parent compound in their reactions with •OH due to its lower barrier and faster rate. In addition, the -NHC(O)-containing compound IM3-P10-H-4 is harmful to aquatic fish and is the primary product in the •OH-rich environment according to the ecotoxicity assessment computations. This study can improve our comprehension on CIP transformation in complex water environments.


Assuntos
Ciprofloxacina/química , Poluentes Químicos da Água/química , Radical Hidroxila , Modelos Químicos , Oxirredução
13.
J Hazard Mater ; 386: 121636, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31753671

RESUMO

The elimination mechanisms and the dynamics of 2,5-dimethylbenzoquinone/2,6-dimethylbenzoquinone are performed by DFT under the presence of ·OH radical and TiO2-clusters. The rate coefficients, calculated within the atmospheric and combustion temperature range of 200-2000 K, agree well with the experimental data. The subsequent reactions including the bond cleavage of quinone ring, O2 addition or abstraction, the reactions of peroxy radical with NO yielding the precursor of organic aerosol are studied. Gaseous water molecule plays an important role in the transformation of alkoxy radical and exhibits a catalytic performance in the enol-ketone tautomerism. The lifetimes of 2,5-dimethylbenzoquinone/2,6-dimethylbenzoquinone are about 12.04-12.86 h at 298 K, which are in favor of the medium range transport of them in the atmosphere. Significantly, the water environment plays a negative role on the ·OH-degradation of dimethylbenzoquinone. Compared to the quinone ring, 2,5-dimethylbenzoquinone onto (TiO2)n clusters (n = 1-6) is easier to be absorbed by TiO2-clusters through its oxygen site because of its strong chemisorption, which indicates that TiO2-clusters are capable of trapping dimethylbenzoquinones effectively. The water environment could weaken the adsorption of 2,5-dimethylbenzoquinone onto (TiO2)n clusters (n = 1-6) by increasing the adsorption energy. This work reveals the removal of dimethylbenzoquinones and the formation of organic aerosol under polluted environments.

14.
J Mol Graph Model ; 93: 107453, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31569010

RESUMO

The nocturnal reactions of CH3CH2OCH2CH3, CHF2CF2OCH2CF3 and CF3CH2OCH3 initiated by NO3 radicals are important sources of alkyl radicals and nitric acids. In this paper, the thermodynamics and kinetics of CH3CH2OCH2CH3, CHF2CF2OCH2CF3 and CF3CH2OCH3 induced by NO3 radical in gas phase are studied in detail by BHandHLYP method combined with 6-311G(d,p) basis set, and the single point correction is calculated by relatively accurate CCSD(T) method. In the temperature range of 200-400 K, the rate constants of title reactions are fitted to the three-parameter Arrhenius formula: k1 = 1.13 × 10-40T9.24exp(1675.99/T) k2 = 2.23 × 10-23T2.81exp(-4476.24/T) k3 = 5.63 × 1043T-19.20exp(-9344.12/T) All the rate constants calculated by the canonical variational transition state theory and the small curvature tunneling are basically consistent with the limited experimental data. By comparing the reaction rate constants of ethyl ether and its isomer methyl propyl ether with NO3 radical at 293 ±â€¯2 K, the higher the symmetry is, the faster the reaction rate of ether is. Thermodynamic calculations and kinetic data of the title reactions indicate that the H-abstraction reactions at the -OCH2- sites are the main reaction pathways. The thermodynamic and kinetic data of the reaction CH3CH2OCH2CH3, CHF2CF2OCH2CF3 with NO3 radical, showing that the reaction activity could be reduced due to the addition of fluorine atoms, which is further verified by the enthalpies, Gibbs free energies of the title reactions and C-H bond dissociation energies of the CH3CH2OCH2CH3, CHF2CF2OCH2CF3 and CF3CH2OCH3 molecules. The reaction thermodynamics and kinetics are determined, and the formation mechanisms of the products are proposed, which are crucial to determine the influence of CH3CH2OCH2CH3, CHF2CF2OCH2CF3 and CF3CH2OCH3 on air quality, as well as its atmospheric lifetime and durability. The atmospheric lifetimes of CH3CH2OCH2CH3, CHF2CF2OCH2CF3 and CF3CH2OCH3 are evaluated in the NO3-concentration range of 5 × 108-2 × 109 molecule cm-3 to fully consider the effects of different regions on their nocturnal migration. The radiation efficiency and global warming potentials (GWPs) have been reported. The products of title reaction CH3CH2OCHCH3, CF3CHOCF2CHF2 and CF3CHOCH3 are further oxidized into organic nitrates in the presence of O2 and NO. Organic nitrites can be isomerized into organic nitrates or degraded to form CH3C(O•)HOCH2CH3, CF3C(O•)HOCF2CHF2 and CH3C(O•)HOCF3 alkoxy radicals and NO2. This work provides deep insight into the night migration and transformation mechanism of the three ethers.


Assuntos
Hidrocarbonetos/química , Nitratos/química , Álcoois/química , Éteres/química , Cinética , Modelos Teóricos , Temperatura , Termodinâmica
15.
Adv Mater ; 30(21): e1706317, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29611231

RESUMO

Incorporation of N,S-codoped nanotube-like carbon (N,S-NTC) can endow electrode materials with superior electrochemical properties owing to the unique nanoarchitecture and improved kinetics. Herein, α-MnS nanoparticles (NPs) are in situ encapsulated into N,S-NTC, preparing an advanced anode material (α-MnS@N,S-NTC) for lithium-ion/sodium-ion batteries (LIBs/SIBs). It is for the first time revealed that electrochemical α → ß phase transition of MnS NPs during the 1st cycle effectively promotes Li-storage properties, which is deduced by the studies of ex situ X-ray diffraction/high-resolution transmission electron microscopy and electrode kinetics. As a result, the optimized α-MnS@N,S-NTC electrode delivers a high Li-storage capacity (1415 mA h g-1 at 50 mA g-1 ), excellent rate capability (430 mA h g-1 at 10 A g-1 ), and long-term cycling stability (no obvious capacity decay over 5000 cycles at 1 A g-1 ) with retained morphology. In addition, the N,S-NTC-based encapsulation plays the key roles on enhancing the electrochemical properties due to its high conductivity and unique 1D nanoarchitecture with excellent protective effects to active MnS NPs. Furthermore, α-MnS@N,S-NTC also delivers high Na-storage capacity (536 mA h g-1 at 50 mA g-1 ) without the occurrence of such α → ß phase transition and excellent full-cell performances as coupling with commercial LiFePO4 and LiNi0.6 Co0.2 Mn0.2 O2 cathodes in LIBs as well as Na3 V2 (PO4 )2 O2 F cathode in SIBs.

16.
J Mol Graph Model ; 72: 156-167, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28092834

RESUMO

The NO3-initiated reactions of CH3OCH3 and CH3OCH2CH3 have been investigated by the BHandHLYP method in conjunction with the 6-311G(d,p) basis set. Thermodynamic and kinetic data are further refined using the comparatively accurate CCSD(T) method. According to the values of reaction enthalpies (ΔHr,298θ) and reaction Gibbs free energies (ΔGr,298θ) from CH3OCH2CH3 with NO3 system, we find that H-abstraction pathway from the α-CH2 group is more exothermic. It is further confirmed by the calculated CH bond dissociation energy of CH3OCH2CH3 molecule. All the rate constants, computed through means of canonical variational transition state with small-curvature tunneling correction, are fitted to the three-parameter expressions k1=1.54×10-23T3.34exp(-1035.53/T) and k2=3.55×10-26T4.31exp(-281.24/T)cm3molecule-1s-1 and branching ratios are computed over the temperature range 200-600K. The branching ratios are also discussed. The atmospheric lifetimes of CH3OCH3 and CH3OCH2CH3 determined by the NO3 radical are about 270 and 29days, respectively.


Assuntos
Atmosfera/química , Éteres/química , Modelos Moleculares , Nitratos/química , Elétrons , Cinética , Conformação Molecular , Estereoisomerismo , Termodinâmica , Vibração
17.
Chemosphere ; 171: 49-56, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28002766

RESUMO

In this work, the density functional and high-level ab initio theories are adopted to investigate the mechanisms and kinetics of reaction of (CH3)3CC(O)X (X = F, Cl, and Br) with atomic chlorine. Rate coefficients for the reactions of chlorine atom with (CH3)3CC(O)F (k1), (CH3)3CC(O)Cl (k2), and (CH3)3CC(O)Br (k3) are calculated using canonical variational transition state theory coupled with small curvature tunneling method over a wide range of temperatures from 250 to 1000 K. The dynamic calculations are performed by the variational transition state theory with the interpolated single-point energies method at the CCSD(T)/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level of theory. Computed rate constant is in good line with the available experimental value. The rate constants for the title reactions are in this order: k1

Assuntos
Cloro/química , Hidrocarbonetos Clorados/química , Óxido Nítrico/química , Oxigênio/química , Atmosfera , Aquecimento Global , Cinética , Oxirredução , Temperatura
18.
Sci Rep ; 7: 40264, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067283

RESUMO

In this study, the mechanistic and kinetic analysis for reactions of CF3OCH(CF3)2 and CF3OCF2CF2H with OH radicals and Cl atoms have been performed at the CCSD(T)//B3LYP/6-311++G(d,p) level. Kinetic isotope effects for reactions CF3OCH(CF3)2/CF3OCD(CF3)2 and CF3OCF2CF2H/CF3OCF2CF2D with OH and Cl were estimated so as to provide the theoretical estimation for future laboratory investigation. All rate constants, computed by canonical variational transition state theory (CVT) with the small-curvature tunneling correction (SCT), are in reasonable agreement with the limited experimental data. Standard enthalpies of formation for the species were also calculated. Atmospheric lifetime and global warming potentials (GWPs) of the reaction species were estimated, the large lifetimes and GWPs show that the environmental impact of them cannot be ignored. The organic nitrates can be produced by the further oxidation of CF3OC(•)(CF3)2 and CF3OCF2CF2• in the presence of O2 and NO. The subsequent decomposition pathways of CF3OC(O•)(CF3)2 and CF3OCF2CF2O• radicals were studied in detail. The derived Arrhenius expressions for the rate coefficients over 230-350 K are: k T(1) = 5.00 × 10-24T3.57 exp(-849.73/T), k T(2) = 1.79 × 10-24T4.84 exp(-4262.65/T), kT(3) = 1.94 × 10-24 T4.18 exp(-884.26/T), and k T(4) = 9.44 × 10-28T5.25 exp(-913.45/T) cm3 molecule-1 s-1.

19.
Environ Sci Pollut Res Int ; 23(23): 23467-23484, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27614635

RESUMO

Multichannel gas-phase reactions of CH3OCH2CH2Cl/CH3CH2OCH2CH2Cl with chlorine atom and hydroxyl radical have been investigated using ab initio method and canonical variational transition-state dynamic computations with the small-curvature tunneling correction. Further energetic information is refined by the coupled-cluster calculations with single and double excitations (CCSD)(T) method. Both hydrogen abstraction and displacement processes are carried out at the same level. Our results reveal that H-abstraction from the -OCH2- group is the dominant channel for CH3OCH2CH2Cl by OH radical or Cl atom, and from α-CH2 of the group CH3CH2- is predominate for the reaction CH3CH2OCH2CH2Cl with Cl/OH. The contribution of displacement processes may be unimportant due to the high barriers. The values of the calculated rate constants reproduce remarkably well the available experiment data. Standard enthalpies of formation for reactants and product radicals are calculated by isodesmic reactions. The Arrhenius expressions are given within 220-1200 K. The atmospheric lifetime, ozone depleting potential (ODP), ozone formation potential (OFP), and global warming potential (GWP) of CH3OCH2CH2Cl/CH3CH2OCH2CH2Cl are investigated. Meanwhile, the atmospheric fate of the alkoxy radicals are also researched using the same level of theory. To shed light on the atmospheric degradation, a mechanistic study is obtained, which indicates that reaction with O2 is the dominant path for the decomposition of CH3OCH(O•)CH2Cl, the C-C bond scission reaction is the primary reaction path in the consumption of CH3CH(O•)OCH2CH2Cl in the atmosphere. HIGHLIGHTS: Ab initio method and canonical variational transition-state theory are employed to study the kinetic nature of hydrogen abstraction reactions of CH3OCH2CH2Cl/CH3CH2OCH2CH2Cl with Cl atom and OH radical and fate of alkoxy radicals (CH3OCH(O•)CH2Cl/CH3CH(O•)OCH2CH2Cl).


Assuntos
Álcoois/química , Cloro/química , Hidrocarbonetos Clorados/química , Hidrogênio/química , Radical Hidroxila/química , Poluentes Atmosféricos/química , Poluição do Ar , Simulação por Computador , Hidrogênio/isolamento & purificação , Cinética , Modelos Químicos , Conformação Molecular , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA