RESUMO
MAIN CONCLUSION: Negatively charged carboxy-polystyrene (CPS) and positively charged amino-polystyrene (NPS) could significantly inhibit the biomass and flavonoid content of dandelion roots and leaves, and the inhibitory effect of NPS was stronger than that of CPS. The increasingly serious pollution of microplastics and heavy metals is likely to affect the efficacy of flavonoids synthesized by dandelion in natural medicine fields. Therefore, we combined hydroponic experiments with computational chemistry (Gaussian and autodock analysis) to explore the mechanism by which amino-polystyrene (NPS), carboxy-polystyrene (CPS), and lead affect the flavonoid biosynthetic pathway in dandelion (Taraxacum asiaticum Dahlst). Our results show that CPS and NPS could significantly inhibit the biomass and flavonoid content of dandelion roots and leaves, and the inhibitory effect of NPS was stronger than that of CPS. Mechanistic studies showed that CPS and NPS increased the content of O2- and H2O2 in dandelion roots and leaves, causing membrane lipid peroxidation, resulting in cell damage and decreased biomass. CPS and NPS inhibited related enzymatic activities by affecting their tertiary structures, resulting in a decrease in phenolic acid, coumaroyl-CoA, and flavonoid content. Dandelion preferred to absorb positively charged NPS compared to negatively charged CPS, but CPS inhibited the uptake of Pb by dandelion more strongly than NPS. Pb promoted CPS agglomeration and increased the surface positive charge of CPS through coordination bonds and hydrogen bonds, so more CPS entered dandelion under CPS + Pb treatment than under CPS alone. Although NPS and CPS reduced the uptake of Pb by dandelion, the biomass and flavonoid contents of dandelion were lower than those of single Pb treatment because of the higher toxicity of NPS and CPS than Pb. Pb significantly increased the effect of CPS on the root biomass of dandelion compared with CPS alone by increasing the positive charge of CPS. We suggest that microplastics with different charges and lead composite pollution inhibit dandelion flavonoid biosynthesis and provide a reference for the loss of dandelion medicinal components and economic value.
Assuntos
Metais Pesados , Taraxacum , Vias Biossintéticas , Coenzima A/metabolismo , Flavonoides/metabolismo , Peróxido de Hidrogênio/metabolismo , Chumbo/toxicidade , Metais Pesados/metabolismo , Microplásticos , Plásticos/metabolismo , Taraxacum/química , Taraxacum/metabolismoRESUMO
Micro- and nano-plastics (MPs/NPs) have emerged as a global pollutant, yet their impact on the root environment of plants remains scarcely explored. Given the widespread pollution of phthalate esters (PAEs) in the environment due to the application of plastic products, the co-occurrence of MPs/NPs and PAEs could potentially threaten the growth medium of plants. This study examined the combined effects of polystyrene (PS) MPs/NPs and PAEs, specifically dibutyl phthalate and di-(2-ethylhexyl) phthalate, on the chemical properties and microbial communities in a wheat growth medium. It was observed that the co-pollution with MPs/NPs and PAEs significantly increased the levels of oxalic acid, formic acid, and total organic carbon (TOC), enhanced microbial activity, and promoted the indigenous input and humification of dissolved organic matter, while slightly reducing the pH of the medium solution. Although changes in chemical indices were primarily attributed to the addition of PAEs, no interaction between PS MPs/NPs and PAEs was detected. High-throughput sequencing revealed no significant change in microbial diversity within the media containing both PS MPs/NPs and PAEs compared to the media with PS MPs/NPs alone. However, alterations in energy and carbohydrate metabolism were noted. Proteobacteria dominated the bacterial communities in the medium solution across all treatment groups, followed by Bacteroidetes and Verrucomicrobia. The composition and structure of these microbial communities varied with the particle size of the PS in both single and combined treatments. Moreover, variations in TOC, oxalic acid, and formic acid significantly influenced the bacterial community composition in the medium, suggesting they could modulate the abundance of dominant bacteria to counteract the stress from exogenous pollutants. This research provides new insights into the combined effects of different sizes of PS particles and another abiotic stressor in the wheat root environment, providing a critical foundation for understanding plant adaptation in complex environmental conditions.
Assuntos
Ácidos Ftálicos , Triticum , Triticum/crescimento & desenvolvimento , Microplásticos , Poluentes do Solo , Ésteres , Dibutilftalato , Microbiologia do Solo , Microbiota/efeitos dos fármacosRESUMO
Micro (Nano)plastics are ubiquitous in the environment and can potentially affect the toxic effects of other chemicals, such as heavy metals. Although the interaction of micro (nano)plastics and heavy metals as well as their effects on aquatic organisms have been widely investigated, studies on their influence on terrestrial plants are limited. Therefore, in this study, the effects of polystyrene (PS), carboxy-modified PS (CPS) and amino-modified PS (APS) nanoparticles on the accumulation and toxicity of Pb on dandelion (Taraxacum asiaticum Dahlst) were investigated using hydroponic cultivation. The presence of the three PS caused cell damage and destroyed the tertiary structure of the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and dehydrogenase (DHA) enzymes, thereby inhibiting Rubisco and root activities, which hindered nutrient uptake and photosynthesis. The inhibition of APS on the biomass of dandelion was greater than that of PS and CPS. Confocal laser scanning microscope and transmission electron microscopy analysis showed that APS was more likely to enter the roots of dandelion than PS and CPS. The presence of Pb induced more PS, CPS, and APS to enter dandelion roots, and Pb aggravated PS and CPS toxicities on dandelion rather than APS toxicity. This is because the complex formed by CPS and Pb can affect the structure of Rubisco and DHA through covalent and coordination bonds, and Pb increased the surface positive charge on CPS, according to Gaussian analysis. The presence of both PS and CPS significantly reduced Pb uptake by dandelion, and they did not exacerbate the toxicity of Pb. In contrast, APS slightly inhibited Pb accumulation, but aggravated Pb toxicity in dandelion. Our findings revealed that the changes in the uptake of nanoplastics and Pb by dandelion potentially resulted in a cascade of events that increased the toxicity and inhibited the growth of dandelion seedlings.
Assuntos
Poliestirenos , Taraxacum , Poliestirenos/química , Microplásticos , Taraxacum/metabolismo , Chumbo/toxicidade , Ribulose-Bifosfato Carboxilase/metabolismo , PlásticosRESUMO
Increasing rates of commercialization and industrialization have led to the comprehensive evaluation of toxic effects of microplastics on crop plants. However, research on the impact of functionalized polystyrene nanoplastics on the toxicity of heavy metals remains limited. This study investigated the effects of polystyrene, carboxy-modified polystyrene, and amino-modified polystyrene on lead (Pb) toxicity in dandelion seedlings. The results showed that carboxy -modified polystyrene with a negative charge absorbed more Pb2+ than polystyrene and amino-modified polystyrene, and their maximum adsorption amounts were 5.328, 0.247, and 0.153 µg g-1, respectively. The hydroponic experiment demonstrated that single amino-modified polystyrene was more toxic to dandelion seedlings than polystyrene and carboxy-modified polystyrene. The presence of Pb2+ was found to increase antioxidant enzymes (superoxide dismutase and catalase) and non-antioxidant enzymes (glutathione and ascorbic acid) activities in response to excessive reactive oxygen species in dandelion leaves and roots treated with polystyrene and carboxy-modified polystyrene, while it did not change much when amino-modified polystyrene was added. Interestingly, compared with single Pb2+, the addition of amino-modified polystyrene with positive charges induced an obvious decrease in the above parameters; however, they declined slightly in the treatments with polystyrene and carboxy-modified polystyrene despite a stronger adsorption capacity for Pb2+. Similarly, the bioactive compounds, including flavonoids, polyphenols, and polysaccharides in dandelion, showed a scavenging effect on O2- and H2O2, thereby inhibiting the accumulation and reducing medicinal properties. This study found that the effects of microplastics on the uptake, distribution, and toxicity of heavy metals depended on the nanoparticle surface charge.