Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
BMC Biotechnol ; 24(1): 2, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200466

RESUMO

BACKGROUND: Lytic polysaccharide monooxygenases (LPMOs) catalyzing the oxidative cleavage of different types of polysaccharides have potential to be used in various industries. However, AA13 family LPMOs which specifically catalyze starch substrates have relatively less members than AA9 and AA10 families to limit their application range. Amylase has been used in enzymatic desizing treatment of cotton fabric for semicentury which urgently need for new assistant enzymes to improve reaction efficiency and reduce cost so as to promote their application in the textile industry. RESULTS: A total of 380 unannotated new genes which probably encode AA13 family LPMOs were discovered by the Hidden Markov model scanning in this study. Ten of them have been successfully heterologous overexpressed. AlLPMO13 with the highest activity has been purified and determined its optimum pH and temperature as pH 5.0 and 50 °C. It also showed various oxidative activities on different substrates (modified corn starch > amylose > amylopectin > corn starch). The results of enzymatic textile desizing application showed that the best combination of amylase (5 g/L), AlLPMO13 (5 mg/L), and H2O2 (3 g/L) made the desizing level and the capillary effects increased by 3 grades and more than 20%, respectively, compared with the results treated by only amylase. CONCLUSION: The Hidden Markov model constructed basing on 34 AA13 family LPMOs was proved to be a valid bioinformatics tool for discovering novel starch-active LPMOs. The novel enzyme AlLPMO13 has strong development potential in the enzymatic textile industry both concerning on economy and on application effect.


Assuntos
Peróxido de Hidrogênio , Amido , Humanos , Polissacarídeos , Amilases , Biologia Computacional , Oxigenases de Função Mista/genética , Têxteis
2.
Metab Eng ; 74: 11-23, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36058465

RESUMO

Bacterial fatty acids (FAs) are an essential component of the cellular membrane and are an important source of renewable chemicals as they can be converted to fatty alcohols, esters, ketones, and alkanes, and used as biofuels, detergents, lubricants, and commodity chemicals. Most prior FA bioconversions have been performed on the carboxylic acid group. Modification of the FA hydrocarbon chain could substantially expand the structural and functional diversity of FA-derived products. Additionally, the effects of such modified FAs on the growth and metabolic state of their producing cells are not well understood. Here we engineer novel Escherichia coli phospholipid biosynthetic pathways, creating strains with distinct FA profiles enriched in ω7-unsaturated FAs (ω7-UFAs, 75%), Δ5-unsaturated FAs (Δ5-UFAs, 60%), cyclopropane FAs (CFAs, 55%), internally-branched FAs (IBFAs, 40%), and Δ5,ω7-double unsaturated FAs (DUFAs, 46%). Although bearing drastically different FA profiles in phospholipids, UFA, CFA, and IBFA enriched strains display wild-type-like phenotypic profiling and growth. Transcriptomic analysis reveals DUFA production drives increased differential expression and the induction of the fur iron starvation transcriptional cascade, but higher TCA cycle activation compared to the UFA producing strain. This likely reflects a slight cost imparted for DUFA production, which resulted in lower maximum growth in some, but not all, environmental conditions. The IBFA-enriched strain was further engineered to produce free IBFAs, releasing 96 mg/L free IBFAs from 154 mg/L of the total cellular IBFA pool. This work has resulted in significantly altered FA profiles of membrane lipids in E. coli, greatly increasing our understanding of the effects of FA structure diversity on the transcriptome, growth, and ability to react to stress.


Assuntos
Escherichia coli , Fosfolipídeos , Escherichia coli/genética , Escherichia coli/metabolismo , Fosfolipídeos/genética , Fosfolipídeos/metabolismo , Ácidos Graxos/genética , Biocombustíveis , Ácidos Graxos Insaturados/genética
3.
J Exp Bot ; 73(19): 6758-6772, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35792654

RESUMO

Cytokinin is considered to be an important driver of seed yield. To increase the yield of cotton while avoiding the negative consequences caused by constitutive overproduction of cytokinin, we down-regulated specifically the carpel genes for cytokinin oxidase/dehydrogenase (CKX), a key negative regulator of cytokinin levels, in transgenic cotton. The carpel-specific down-regulation of CKXs significantly enhanced cytokinin levels in the carpels. The elevated cytokinin promoted the expression of carpel- and ovule-development-associated genes, GhSTK2, GhAG1, and GhSHP, boosting ovule formation and thus producing more seeds in the ovary. Field experiments showed that the carpel-specific increase of cytokinin significantly increased both seed yield and fiber yield of cotton, without resulting in detrimental phenotypes. Our study details the regulatory mechanism of cytokinin signaling for seed development, and provides an effective and feasible strategy for yield improvement of seed crops.


Assuntos
Citocininas , Sementes , Regulação para Baixo , Citocininas/metabolismo , Óvulo Vegetal , Regulação da Expressão Gênica de Plantas , Fibra de Algodão
4.
Microb Cell Fact ; 21(1): 276, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581997

RESUMO

BACKGROUND: Poly γ-glutamic acid (γ-PGA) is a promising biopolymer for various applications. For glutamic acid-independent strains, the titer of γ-PGA is too low to meet the industrial demand. In this study, we isolated a novel γ-PGA-producing strain, Bacillus tequilensis BL01, and multiple genetic engineering strategies were implemented to improve γ-PGA production. RESULTS: First, the one-factor-at-a-time method was used to investigate the influence of carbon and nitrogen sources and temperature on γ-PGA production. The optimal sources of carbon and nitrogen were sucrose and (NH4)2SO4 at 37 °C, respectively. Second, the sucA, gudB, pgdS, and ggt genes were knocked out simultaneously, which increased the titer of γ-PGA by 1.75 times. Then, the titer of γ-PGA increased to 18.0 ± 0.3 g/L by co-overexpression of the citZ and pyk genes in the mutant strain. Furthermore, the γ-PGA titer reached 25.3 ± 0.8 g/L with a productivity of 0.84 g/L/h and a yield of 1.50 g of γ-PGA/g of citric acid in fed-batch fermentation. It should be noted that this study enables the synthesis of low (1.84 × 105 Da) and high (2.06 × 106 Da) molecular weight of γ-PGA by BL01 and the engineering strain. CONCLUSION: The application of recently published strategies to successfully improve γ-PGA production for the new strain B. tequilensis BL01 is reported. The titer of γ-PGA increased 2.17-fold and 1.32-fold compared with that of the wild type strain in the flask and 5 L fermenter. The strain shows excellent promise as a γ-PGA producer compared with previous studies. Meanwhile, different molecular weights of γ-PGA were obtained, enhancing the scope of application in industry.


Assuntos
Ácido Cítrico , Ácido Glutâmico , Ácido Glutâmico/metabolismo , Ácido Poliglutâmico , Fermentação , Engenharia Metabólica/métodos , Carbono , Nitrogênio
5.
BMC Genomics ; 22(1): 463, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34157978

RESUMO

BACKGROUND: The amino acid/auxin permease (AAAP) family represents a class of proteins that transport amino acids across cell membranes. Members of this family are widely distributed in different organisms and participate in processes such as growth and development and the stress response in plants. However, a systematic comprehensive analysis of AAAP genes of the pepper (Capsicum annuum) genome has not been reported. RESULTS: In this study, we performed systematic bioinformatics analyses to identify AAAP family genes in the C. annuum 'Zunla-1' genome to determine gene number, distribution, structure, duplications and expression patterns in different tissues and stress. A total of 53 CaAAAP genes were identified in the 'Zunla-1' pepper genome and could be divided into eight subgroups. Significant differences in gene structure and protein conserved domains were observed among the subgroups. In addition to CaGAT1, CaATL4, and CaVAAT1, the remaining CaAAAP genes were unevenly distributed on 11 of 12 chromosomes. In total, 33.96% (18/53) of the CaAAAP genes were a result of duplication events, including three pairs of genes due to segmental duplication and 12 tandem duplication events. Analyses of evolutionary patterns showed that segmental duplication of AAAPs in pepper occurred before tandem duplication. The expression profiling of the CaAAAP by transcriptomic data analysis showed distinct expression patterns in various tissues and response to different stress treatment, which further suggest that the function of CaAAAP genes has been differentiated. CONCLUSIONS: This study of CaAAAP genes provides a theoretical basis for exploring the roles of AAAP family members in C. annuum.


Assuntos
Capsicum , Capsicum/genética , Capsicum/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Ácidos Indolacéticos , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
J Exp Bot ; 70(12): 3139-3151, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-30970146

RESUMO

Auxin-dependent cell expansion is crucial for initiation of fiber cells in cotton (Gossypium hirsutum), which ultimately determines fiber yield and quality. However, the regulation of this process is far from being well understood. In this study, we demonstrate an antagonistic effect between cytokinin (CK) and auxin on cotton fiber initiation. In vitro and in planta experiments indicate that enhanced CK levels can reduce auxin accumulation in the ovule integument, which may account for the defects in the fiberless mutant xu142fl. In turn, supplementation with auxin can recover fiber growth of CK-treated ovules and mutant ovules. We further found that GhPIN3a is a key auxin transporter for fiber-cell initiation and is polarly localized to the plasma membranes of non-fiber cells, but not to those of fiber cells. This polar localization allows auxin to be transported within the ovule integument while specifically accumulating in fiber cells. We show that CKs antagonize the promotive effect of auxin on fiber cell initiation by undermining asymmetric accumulation of auxin in the ovule epidermis through down-regulation of GhPIN3a and disturbance of the polar localization of the protein.


Assuntos
Citocininas/metabolismo , Gossypium/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Óvulo Vegetal/metabolismo , Proteínas de Plantas/genética , Fibra de Algodão , Gossypium/genética , Gossypium/metabolismo , Epiderme Vegetal/metabolismo , Proteínas de Plantas/metabolismo
7.
Biomacromolecules ; 19(9): 3853-3860, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30080972

RESUMO

Despite significant efforts to engineer their heterologous production, recombinant spider silk proteins (spidroins) have yet to replicate the unparalleled combination of high strength and toughness exhibited by natural spider silks, preventing their use in numerous mechanically demanding applications. To overcome this long-standing challenge, we have developed a synthetic biology approach combining standardized DNA part assembly and split intein-mediated ligation to produce recombinant spidroins of previously unobtainable size (556 kDa), containing 192 repeat motifs of the Nephila clavipes dragline spidroin. Fibers spun from our synthetic spidroins are the first to fully replicate the mechanical performance of their natural counterparts by all common metrics, i.e., tensile strength (1.03 ± 0.11 GPa), modulus (13.7 ± 3.0 GPa), extensibility (18 ± 6%), and toughness (114 ± 51 MJ/m3). The developed process reveals a path to more dependable production of high-performance silks for mechanically demanding applications while also providing a platform to facilitate production of other high-performance natural materials.


Assuntos
Fibroínas/química , Resistência à Tração , Elasticidade , Fibroínas/genética , Fibroínas/normas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
8.
Appl Microbiol Biotechnol ; 102(17): 7377-7388, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29926142

RESUMO

Mesaconate, a branched unsaturated dicarboxylic acid, has drawn great interest because of its versatile applications. In this work, we optimized the fermentation efficiency of Escherichia coli to produce mesaconate from glucose. We first drove the carbon flux to 2-ketoglutarate by overexpressing genes involved in TCA precursor pathway and anaplerotic pathways. Then, to increase the pool of phosphoenolpyruvate (PEP), an upstream precursor for 2-ketoglutarate, the phosphotransferase system (PTS) of E. coli was inactivated by deleting glucose PTS permease and the import of glucose was altered by overexpressing galactose/H+ symporter GalP. Further, production optimization was achieved by deleting a class I fumarase (FumA) to block the hydration of mesaconate. Finally, we overexpressed PEP synthase (PpsA) to increase the availability of phosphoenolpyruvate and accelerate the production of mesaconate. These genetic modifications led to mesaconate production with a titer of 23.1 g L-1 and a yield of 0.46 g g-1 glucose (64% of the theoretical maximum). This work demonstrates the possibility of engineering a highly efficient bacteria strain that converts glucose into mesaconate with promising titer, rate, and yield.


Assuntos
Ciclo do Carbono/genética , Escherichia coli/metabolismo , Fumaratos/metabolismo , Glucose/metabolismo , Microbiologia Industrial , Maleatos/metabolismo , Transporte Biológico , Proteínas de Ligação ao Cálcio/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fermentação , Deleção de Genes , Expressão Gênica , Proteínas de Transporte de Monossacarídeos/genética , Proteínas Periplásmicas de Ligação/genética , Fosfoenolpiruvato/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Piruvato Sintase/genética
9.
BMC Biotechnol ; 16(1): 77, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27825339

RESUMO

BACKGROUND: Family 11 alkaline xylanases have great potential economic applications in the pulp and paper industry. In this study, we would improve the alkalophilicity of family 11 alkaline xylanase Xyn11A-LC from Bacillus sp. SN5, for the better application in this field. RESULTS: A random mutation library of Xyn11A-LC with about 10,000 clones was constructed by error-prone PCR. One mutant, M52-C10 (V116A and E135V), with improved alkalophilicity was obtained from the library. Site-directed mutation showed that the mutation E135V was responsible for the alkalophilicity of the mutant. The variant E135V shifted the optimum pH of the wild-type enzyme from 7.5 to 8.0. Compared to the relative activities of the wild type enzyme, those of the mutant E135V increased by 17.5, 18.9, 14.3 and 9.5 % at pH 8.5, 9.0, 9.5 and 10.0, respectively. Furthermore, Glu135 saturation mutagenesis showed that the only mutant to have better alkalophilicity than E135V was E135R. The optimal pH of the mutant E135R was 8.5, 1.0 pH units higher than that of the wild-type. In addition, compared to the wild-type enzyme, the mutations E135V and E135R increased the catalytic efficiency (k cat/K m) by 57 and 37 %, respectively. Structural analysis showed that the residue at position 135, located in the eight-residue loop on the protein surface, might improve the alkalophilicity and catalytic activity by the elimination of the negative charge and the formation of salt-bridge. CONCLUSIONS: Mutants E135V and E135R with improved alkalophilicity were obtained by directed evolution and site saturation mutagenesis. The residue at position 135 in the eight-residue loop on the protein surface was found to play an important role in the pH activity profile of family 11 xylanases. This study provided alkalophilic mutants for application in bleaching process, and it was also helpful to understand the alkaline adaptation mechanism of family 11 xylanases.


Assuntos
Bacillus/enzimologia , Bacillus/genética , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Melhoramento Genético/métodos , Mutagênese Sítio-Dirigida/métodos , Álcalis/química , Bacillus/classificação , Endo-1,4-beta-Xilanases/genética , Ativação Enzimática , Glutamina/genética , Concentração de Íons de Hidrogênio , Mutação/genética , Engenharia de Proteínas , Distribuição Aleatória
10.
Metab Eng ; 38: 285-292, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27697562

RESUMO

Dicarboxylic acids are attractive biosynthetic targets due to their broad applications and their challenging manufacturing process from fossil fuel feedstock. Mesaconate is a branched, unsaturated dicarboxylic acid that can be used as a co-monomer to produce hydrogels and fire-retardant materials. In this study, we engineered nonphosphorylative metabolism to produce mesaconate from d-xylose and l-arabinose. This nonphosphorylative metabolism is orthogonal to the intrinsic pentose metabolism in Escherichia coli and has fewer enzymatic steps and a higher theoretical yield to TCA cycle intermediates than the pentose phosphate pathway. Here mesaconate production was enabled from the d-xylose pathway and the l-arabinose pathway. To enhance the transportation of d-xylose and l-arabinose, pentose transporters were examined. We identified the pentose/proton symporter, AraE, as the most effective transporter for both d-xylose and l-arabinose in mesaconate production process. Further production optimization was achieved by operon screening and metabolic engineering. These efforts led to the engineered strains that produced 12.5g/l and 13.2g/l mesaconate after 48h from 20g/l of d-xylose and l-arabinose, respectively. Finally, the engineered strain overexpressing both l-arabinose and d-xylose operons produced 14.7g/l mesaconate from a 1:1 d-xylose and l-arabinose mixture with a yield of 85% of the theoretical maximum. (0.87g/g). This work demonstrates an effective system that converts pentoses into a value-added chemical, mesaconate, with promising titer, rate, and yield.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/fisiologia , Fumaratos/metabolismo , Maleatos/metabolismo , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Pentoses/metabolismo , Arabinose/metabolismo , Vias Biossintéticas/genética , Proteínas de Escherichia coli/metabolismo , Fumaratos/isolamento & purificação , Melhoramento Genético/métodos , Lignina/metabolismo , Maleatos/isolamento & purificação , Fosforilação/genética , Xilose/metabolismo
11.
Appl Environ Microbiol ; 82(24): 7176-7184, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27736790

RESUMO

Chromosomal integration of heterologous metabolic pathways is optimal for industrially relevant fermentation, as plasmid-based fermentation causes extra metabolic burden and genetic instabilities. In this work, chromosomal integration was adapted for the production of mevalonate, which can be readily converted into ß-methyl-δ-valerolactone, a monomer for the production of mechanically tunable polyesters. The mevalonate pathway, driven by a constitutive promoter, was integrated into the chromosome of Escherichia coli to replace the native fermentation gene adhE or ldhA The engineered strains (CMEV-1 and CMEV-2) did not require inducer or antibiotic and showed slightly higher maximal productivities (0.38 to ∼0.43 g/liter/h) and yields (67.8 to ∼71.4% of the maximum theoretical yield) than those of the plasmid-based fermentation. Since the glycolysis pathway is the first module for mevalonate synthesis, atpFH deletion was employed to improve the glycolytic rate and the production rate of mevalonate. Shake flask fermentation results showed that the deletion of atpFH in CMEV-1 resulted in a 2.1-fold increase in the maximum productivity. Furthermore, enhancement of the downstream pathway by integrating two copies of the mevalonate pathway genes into the chromosome further improved the mevalonate yield. Finally, our fed-batch fermentation showed that, with deletion of the atpFH and sucA genes and integration of two copies of the mevalonate pathway genes into the chromosome, the engineered strain CMEV-7 exhibited both high maximal productivity (∼1.01 g/liter/h) and high yield (86.1% of the maximum theoretical yield, 30 g/liter mevalonate from 61 g/liter glucose after 48 h in a shake flask). IMPORTANCE: Metabolic engineering has succeeded in producing various chemicals. However, few of these chemicals are commercially competitive with the conventional petroleum-derived materials. In this work, chromosomal integration of the heterologous pathway and subsequent optimization strategies ensure stable and efficient (i.e., high-titer, high-yield, and high-productivity) production of mevalonate, which demonstrates the potential for scale-up fermentation. Among the optimization strategies, we demonstrated that enhancement of the glycolytic flux significantly improved the productivity. This result provides an example of how to tune the carbon flux for the optimal production of exogenous chemicals.


Assuntos
Cromossomos Bacterianos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Ácido Mevalônico/metabolismo , Fermentação , Glucose/metabolismo , Engenharia Metabólica , Plasmídeos/genética , Plasmídeos/metabolismo
12.
Biotechnol Appl Biochem ; 62(2): 208-17, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24975401

RESUMO

A xylanase gene (xyn11A) was cloned from the genomic library of alkalophilic Bacillus sp. SN5. It encoded a polypeptide of 366 amino acids, consisting of a family 11 glycoside hydrolase, a short linker region, and a family 36 carbohydrate-binding module (CBM). The intact xylanase Xyn11A and the CBM-linker-truncated Xyn11A-LC were expressed in Escherichia coli BL21 (DE3). Both purified recombinant proteins exhibited the highest activity at 55 °C. The optimal pH for Xyn11A activity was 7.5, whereas Xyn11A-LC showed a broad pH profile (>80% activity at pH 5.5-8.5) with optimal activity at pH 5.5 and 7.5-8.0. They had high alkali tolerance, retaining over 80% residual activity after preincubation at pH 8.5-11.0 at 37 °C for 1 H. Xyn11A-LC showed better thermal stability, lower affinity, and lower catalytic activity to insoluble xylan than Xyn11A, whereas its specific activity for soluble beechwood xylan (4,511.9 U/mg) was greater than that of Xyn11A (3,136.4 U/mg). These results implied that the CBM of Xyn11A could change the enzymatic properties and play a role in degrading insoluble xylan. Xyn11A-LC is a family 11 alkali-tolerant cellulase-free xylanase with high specific activity, which qualifies it as a potential candidate for industrial applications, especially in the paper industry.


Assuntos
Álcalis/química , Bacillus/metabolismo , Clonagem Molecular/métodos , Escherichia coli/enzimologia , Xilosidases/química , Xilosidases/metabolismo , Bacillus/classificação , Bacillus/genética , Ativação Enzimática , Estabilidade Enzimática , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Engenharia de Proteínas/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Xilosidases/genética
13.
Biotechnol Lett ; 36(7): 1495-501, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24682788

RESUMO

The alkaline xylanase Xyn11A-LC from the alkalophilic Bacillus sp. SN5 was expressed in E. coli, purified and crystallized. The crystal structure was determined at a resolution of 1.49 Å. Xyn11A-LC has the ß-jelly roll structure typical of family 11 xylanases. To improve its thermostability and thermophilicity, a mutant SB3 was constructed by introducing three arginines on the different sides of the protein surface. SB3 increased the optimum temperature by 5 °C. The wild type and SB3 had the half-lives of 22 and 68 min at 65 °C at pH 8.0 (Tris/HCl buffer), respectively. CD spectroscopy revealed that the melting temperature (T m) of the wild type and SB3 were 55.3 and 66.9 °C, respectively. These results showed that the introduction of arginines enhance the thermophilicity and thermostability of Xyn11A-LC.


Assuntos
Substituição de Aminoácidos , Bacillus/enzimologia , Xilosidases/química , Xilosidases/metabolismo , Bacillus/genética , Dicroísmo Circular , Cristalografia por Raios X , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Concentração de Íons de Hidrogênio , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise Espectral , Temperatura , Temperatura de Transição , Xilosidases/genética
14.
Colloids Surf B Biointerfaces ; 234: 113677, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043505

RESUMO

Skin substitutes are designed to promote wound healing by replacing extracellular matrix. Silk-elastin-like protein is a renewable extracellular matrix-like material that integrated the advantages of silk and elastin-like protein. In this study, electrospun silk-elastin-like protein (SELP) nanofiber membrane covered with bacterial cellulose (BC) was created as a potential skin substitute to mimic gradient structure of epidermis and dermis of skin. The two layers were glued together using adhesive SELP containing 3,4-dihydroxyphenylalanine (DOPA) converted from tyrosine by tyrosinase. Skin topical drugs commonly used in clinical practice can penetrate through the SELP/BC barrier, and the rate of penetration is proportional to drug concentration. BC with dense fibrous structure can act as a barrier to preserve the inner SELP layer and prevent bacterial invasion, with a blocking permeation efficiency over 99% against four species of bacteria. Cell experiments demonstrated that the reticular fibers of SELP could provide an appropriate growth environment for skin cells proliferation and adhesion, which is considered to promote tissue repair and regeneration. The promising results support this strategy to fabricate a silk-elastin-like protein-based biomaterial for skin substitutes in the clinical treatment of full skin injuries and ulcers.


Assuntos
Nanofibras , Proteínas Recombinantes de Fusão , Pele Artificial , Celulose/farmacologia , Nanofibras/química , Seda/química , Elastina/química
15.
J Agric Food Chem ; 72(15): 8674-8683, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38569079

RESUMO

The enhancement of intracellular glutamate synthesis in glutamate-independent poly-γ-glutamic acid (γ-PGA)-producing strains is an essential strategy for improving γ-PGA production. Bacillus tequilensis BL01ΔpgdSΔggtΔsucAΔgudB:P43-ppc-pyk-gdhA for the efficient synthesis of γ-PGA was constructed through expression of glutamate synthesis features of Corynebacterium glutamicum, which increased the titer of γ-PGA by 2.18-fold (3.24 ± 0.22 g/L) compared to that of B. tequilensis BL01ΔpgdSΔggtΔsucAΔgudB (1.02 ± 0.11 g/L). To further improve the titer of γ-PGA and decrease the production of byproducts, three enzymes (Ppc, Pyk, and AceE) were assembled to a complex using SpyTag/Catcher pairs. The results showed that the γ-PGA titer of the assembled strain was 31.31% higher than that of the unassembled strain. To further reduce the production cost, 25.73 ± 0.69 g/L γ-PGA with a productivity of 0.48 g/L/h was obtained from cheap molasses. This work provides new metabolic engineering strategies to improve the production of γ-PGA in B. tequilensis BL01. Furthermore, the engineered strain has great potential for the industrial production of γ-PGA from molasses.


Assuntos
Bacillus , Corynebacterium glutamicum , Ácido Poliglutâmico/análogos & derivados , Ácido Glutâmico/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo
16.
ACS Synth Biol ; 13(4): 1191-1204, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38536670

RESUMO

The presence of a hydration layer in humid and underwater environments challenges adhesive-substrate interactions and prevents effective bonding, which has become a significant obstacle to the development of adhesives in the industrial and biomedical fields. In this study, ultrahigh-molecular-weight (UHMW) silk-elastin-like proteins (SELP) with 3,4-dihydroxyphenylalanine (DOPA) converted from tyrosine residues by tyrosinase exhibited excellent adhesive properties on different interfaces, such as glass, aluminum, wood, polypropylene sheets, and pigskin, under both dry and wet conditions. Additionally, by incorporating trace amounts of cross-linking agents like Fe3+, NaIO4, and tris(hydroxymethyl) phosphine (THP), the mussel-inspired adhesives maintained a stable and excellent adhesion, broadening the conditions of application. Notably, the UHMW SELP adhesive exhibited remarkable underwater adhesion properties with a shear strength of 0.83 ± 0.17 MPa on glass. It also demonstrated good adhesion to biological tissues including the kidney, liver, heart, and lungs. In vitro cytocompatibility testing using L929 cells showed minimal toxicity, highlighting its potential application in the biomedical field. The sustainable, cytocompatible, cost-effective, and highly efficient adhesive provides valuable insights for the design and development of a new protein-based underwater adhesive for medical application.


Assuntos
Adesivos , Monofenol Mono-Oxigenase , Proteínas Recombinantes de Fusão , Adesivos/química , Elastina , Seda
17.
Plants (Basel) ; 13(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39204695

RESUMO

The benefits of citrus fruits are strongly associated with their secondary metabolites. In this study, we conducted widely targeted metabolomics analyses to compare the variability of the ingredients in four scion-rootstock combinations. A total of 376 differential metabolites were obtained by a multivariate statistical analysis, and a KEGG pathway analysis showed that the enriched metabolic pathways were mainly related to the biosynthesis of flavonoids as well as lipid metabolism. The anthocyanin-targeted metabolomic features showed that cyanidin 3-O-glucoside, cyanidin 3-O-(6-O-malonyl-beta-D-glucoside), cyanidin 3-O-sophoroside, and cyanidin 3-O-xyloside were the pigments responsible for the red color of Tarocco. A lipid metabolomics analysis revealed that when Tarocco was hetero-grafted with rootstock H, there was an increase in the content of each lipid subclass, accompanied by an increase in the levels of unsaturated fatty acids, including polyunsaturated linoleic and linolenic acids, thus impacting the ratio of unsaturated fatty acids to saturated fatty acids. Additionally, we determined their antioxidant capacity ('Trifoliate orange' (Z) > 'Citrange' (ZC) > 'Hongju' (H) > 'Ziyang Xiangcheng' (X)) using in vitro assays. Finally, we utilized a network pharmacology analysis to explore the antioxidant mechanisms and potential pharmacological ingredients; we obtained 26 core targets proteins and 42 core metabolites associated with oxidative damage, providing a basis for future preventive and therapeutic applications of these metabolites.

18.
Microorganisms ; 12(7)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-39065044

RESUMO

The N-terminal sequences of proteins and their corresponding encoding sequences may play crucial roles in the heterologous expression. In this study, the secretory expression of alkaline pectin lyase APL in B. subtilis was investigated to explore the effects of the N-terminal 5-7 amino acid sequences of different signal peptides on the protein expression and secretion. It was identified for the first time that the first five amino acid sequences of the N-terminal of the signal peptide (SP-LipA) from Bacillus subtilis lipase A play an important role in promoting the expression of APL. Furthermore, it was revealed that SP-LipA resulted in higher secretory expression compared to other signal peptides in this study primarily due to its encoding of N-terminal amino acids with relatively higher transcription levels and its efficient secretion capacity. Based on this foundation, the recombinant strain constructed in this work achieved a new record for the highest extracellular yields of APL in B. subtilis, reaching 12,295 U/mL, which was 1.9-times higher than that expressed in the recombinant Escherichia coli strain previously reported. The novel theories uncovered in this study are expected to play significant roles in enhancing the expression of foreign proteins both inside and outside of cells.

19.
Bioengineering (Basel) ; 11(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39061743

RESUMO

Neutral pullulanases, having a good application prospect in trehalose production, showed a limited expression level. In order to address this issue, two approaches were utilized to enhance the yield of a new neutral pullulanase variant (PulA3E) in B. subtilis. One involved using multiple copies of genome integration to increase its expression level and fermentation stability. The other focused on enhancing the PulA-type atypical secretion pathway to further improve the secretory expression of PulA3E. Several strains with different numbers of genome integrations, ranging from one to four copies, were constructed. The four-copy genome integration strain PD showed the highest extracellular pullulanase activity. Additionally, the integration sites ytxE, ytrF, and trpP were selected based on their ability to enhance the PulA-type atypical secretion pathway. Furthermore, overexpressing the predicated regulatory genes comEA and yvbW of the PulA-type atypical secretion pathway in PD further improved its extracellular expression. Three-liter fermenter scale-up production of PD and PD-ARY yielded extracellular pullulanase activity of 1767.1 U/mL at 54 h and 2465.1 U/mL at 78 h, respectively. Finally, supplementing PulA3E with 40 U/g maltodextrin in the multi-enzyme catalyzed system resulted in the highest trehalose production of 166 g/L and the substrate conversion rate of 83%, indicating its potential for industrial application.

20.
Front Bioeng Biotechnol ; 11: 1131875, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36777253

RESUMO

Pullulan has many potential applications in the food, pharmaceutical, cosmetic and environmental industries. However, the yield and molecular properties of pullulan produced by various strains still need to be promoted to fit the application needs. A novel yeast-like strain Aureobasidium pullulans BL06 producing high molecular weight (Mw) pullulan (3.3 × 106 Da) was isolated and identified in this study. The remarkable Mw of pullulan produced by A. pullulans BL06 was the highest level ever reported thus far. To further regulate the biosynthesis of pullulan in A. pullulans BL06, three gene knockout strains A. pullulans BL06 ΔPMAs, A. pullulans BL06 Δmel, and A. pullulans BL06 ΔPMAsΔmel, were constructed. The results showed that A. pullulans BL06 ΔPMAs could produce 140.2 g/L of moderate Mw (1.3 × 105 Da) pullulan after 120 h of fermentation. The highest yield level of pullulan to date could vastly reduce its production cost and expand its application scope and potential. The application experiments in food preservation showed that the moderate-Mw pullulan obtained in this work could reduce the weight loss of celery cabbages and mangos by 12.5% and 22%, respectively. Thus, the novel strains A. pullulans BL06 and A. pullulans BL06 ΔPMAs possessed unlimited development prospects in pullulan production at various Mw ranges and pullulan applications in multiple fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA