Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.815
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 57(4): 876-889.e11, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38479384

RESUMO

Concentrations of the secondary bile acid, deoxycholic acid (DCA), are aberrantly elevated in colorectal cancer (CRC) patients, but the consequences remain poorly understood. Here, we screened a library of gut microbiota-derived metabolites and identified DCA as a negative regulator for CD8+ T cell effector function. Mechanistically, DCA suppressed CD8+ T cell responses by targeting plasma membrane Ca2+ ATPase (PMCA) to inhibit Ca2+-nuclear factor of activated T cells (NFAT)2 signaling. In CRC patients, CD8+ T cell effector function negatively correlated with both DCA concentration and expression of a bacterial DCA biosynthetic gene. Bacteria harboring DCA biosynthetic genes suppressed CD8+ T cells effector function and promoted tumor growth in mice. This effect was abolished by disrupting bile acid metabolism via bile acid chelation, genetic ablation of bacterial DCA biosynthetic pathway, or specific bacteriophage. Our study demonstrated causation between microbial DCA metabolism and anti-tumor CD8+ T cell response in CRC, suggesting potential directions for anti-tumor therapy.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Ácidos e Sais Biliares , Ácido Desoxicólico/farmacologia , Linfócitos T CD8-Positivos
2.
Cell ; 160(5): 940-951, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25723168

RESUMO

Type VI secretion systems (T6SSs) are newly identified contractile nanomachines that translocate effector proteins across bacterial membranes. The Francisella pathogenicity island, required for bacterial phagosome escape, intracellular replication, and virulence, was presumed to encode a T6SS-like apparatus. Here, we experimentally confirm the identity of this T6SS and, by cryo electron microscopy (cryoEM), show the structure of its post-contraction sheath at 3.7 Å resolution. We demonstrate the assembly of this T6SS by IglA/IglB and secretion of its putative effector proteins in response to environmental stimuli. The sheath has a quaternary structure with handedness opposite that of contracted sheath of T4 phage tail and is organized in an interlaced two-dimensional array by means of ß sheet augmentation. By structure-based mutagenesis, we show that this interlacing is essential to secretion, phagosomal escape, and intracellular replication. Our atomic model of the T6SS will facilitate design of drugs targeting this highly prevalent secretion apparatus.


Assuntos
Proteínas de Bactérias/química , Sistemas de Secreção Bacterianos , Francisella/ultraestrutura , Proteínas de Bactérias/ultraestrutura , Bacteriófago T4/química , Bacteriófagos/química , Microscopia Crioeletrônica , Modelos Moleculares , Estrutura Secundária de Proteína
3.
Development ; 151(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38646855

RESUMO

Ecdysone-induced protein 93 (E93), known as the 'adult-specifier' transcription factor in insects, triggers metamorphosis in both hemimetabolous and holometabolous insects. Although E93 is conserved in ametabolous insects, its spatiotemporal expression and physiological function remain poorly understood. In this study, we first discover that, in the ametabolous firebrat Thermobia domestica, the previtellogenic ovary exhibits cyclically high E93 expression, and E93 mRNA is broadly distributed in previtellogenic ovarioles. E93 homozygous mutant females of T. domestica exhibit severe fecundity deficiency due to impaired previtellogenic development of the ovarian follicles, likely because E93 induces the expression of genes involved in ECM (extracellular matrix)-receptor interactions during previtellogenesis. Moreover, we reveal that in the hemimetabolous cockroach Blattella germanica, E93 similarly promotes previtellogenic ovarian development. In addition, E93 is also essential for vitellogenesis that is necessary to guarantee ovarian maturation and promotes the vitellogenesis-previtellogenesis switch in the fat body of adult female cockroaches. Our findings deepen the understanding of the roles of E93 in controlling reproduction in insects, and of E93 expression and functional evolution, which are proposed to have made crucial contributions to the origin of insect metamorphosis.


Assuntos
Metamorfose Biológica , Ovário , Reprodução , Animais , Feminino , Reprodução/genética , Metamorfose Biológica/genética , Ovário/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Vitelogênese/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética
4.
Plant Cell ; 35(8): 3053-3072, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37100425

RESUMO

The ketocarotenoid fucoxanthin and its derivatives can absorb blue-green light enriched in marine environments. Fucoxanthin is widely adopted by phytoplankton species as a main light-harvesting pigment, in contrast to land plants that primarily employ chlorophylls. Despite its supreme abundance in the oceans, the last steps of fucoxanthin biosynthesis have remained elusive. Here, we identified the carotenoid isomerase-like protein CRTISO5 as the diatom fucoxanthin synthase that is related to the carotenoid cis-trans isomerase CRTISO from land plants but harbors unexpected enzymatic activity. A crtiso5 knockout mutant in the model diatom Phaeodactylum tricornutum completely lacked fucoxanthin and accumulated the acetylenic carotenoid phaneroxanthin. Recombinant CRTISO5 converted phaneroxanthin into fucoxanthin in vitro by hydrating its carbon-carbon triple bond, instead of functioning as an isomerase. Molecular docking and mutational analyses revealed residues essential for this activity. Furthermore, a photophysiological characterization of the crtiso5 mutant revealed a major structural and functional role of fucoxanthin in photosynthetic pigment-protein complexes of diatoms. As CRTISO5 hydrates an internal alkyne physiologically, the enzyme has unique potential for biocatalytic applications. The discovery of CRTISO5 illustrates how neofunctionalization leads to major diversification events in evolution of photosynthetic mechanisms and the prominent brown coloration of most marine photosynthetic eukaryotes.


Assuntos
Diatomáceas , Xantofilas , Simulação de Acoplamento Molecular , Xantofilas/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Diatomáceas/genética , Diatomáceas/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(33): e2305717120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549287

RESUMO

Great progress has been made in identifying positive regulators that activate adipocyte thermogenesis, but negative regulatory signaling of thermogenesis remains poorly understood. Here, we found that cardiotrophin-like cytokine factor 1 (CLCF1) signaling led to loss of brown fat identity, which impaired thermogenic capacity. CLCF1 levels decreased during thermogenic stimulation but were considerably increased in obesity. Adipocyte-specific CLCF1 transgenic (CLCF1-ATG) mice showed impaired energy expenditure and severe cold intolerance. Elevated CLCF1 triggered whitening of brown adipose tissue by suppressing mitochondrial biogenesis. Mechanistically, CLCF1 bound and activated ciliary neurotrophic factor receptor (CNTFR) and augmented signal transducer and activator of transcription 3 (STAT3) signaling. STAT3 transcriptionally inhibited both peroxisome proliferator-activated receptor-γ coactivator (PGC) 1α and 1ß, which thereafter restrained mitochondrial biogenesis in adipocytes. Inhibition of CNTFR or STAT3 could diminish the inhibitory effects of CLCF1 on mitochondrial biogenesis and thermogenesis. As a result, CLCF1-TG mice were predisposed to develop metabolic dysfunction even without external metabolic stress. Our findings revealed a brake signal on nonshivering thermogenesis and suggested that targeting this pathway could be used to restore brown fat activity and systemic metabolic homeostasis in obesity.


Assuntos
Adipócitos Marrons , Biogênese de Organelas , Animais , Camundongos , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Homeostase , Obesidade/genética , Obesidade/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Termogênese/fisiologia
6.
Development ; 149(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35815651

RESUMO

In insects, the loss of flight typically involves a dispersal-reproduction transition, but the underlying molecular mechanisms remain poorly understood. In the parthenogenetic pea aphid Acyrthosiphon pisum, winged females undergo flight-muscle degeneration after flight and feeding on new host plants. Similarly, topical application of a juvenile hormone (JH) mimic to starved aphids also induces flight-muscle degeneration. We found that feeding preferentially upregulated the expression of the JH receptor gene Met and a JH-inducible gene, Kr-h1, in the flight muscles, and, thus, enhanced tissue-specific JH sensitivity and signaling. RNAi-mediated knockdown of Kr-h1 prevented flight-muscle degeneration. Likewise, blocking nutritional signals by pharmacological inhibition of the target of rapamycin complex 1 (TORC1) impaired JH sensitivity of the flight muscles in feeding aphids and subsequently delayed muscle degeneration. RNA-sequencing analysis revealed that enhanced JH signaling inhibited the transcription of genes involved in the tricarboxylic acid cycle, likely resulting in reduction of the energy supply, mitochondrial dysfunction and muscle-fiber breakdown. This study shows that nutrient-dependent hormone sensitivity regulates developmental plasticity in a tissue-specific manner, emphasizing a relatively underappreciated mechanism of hormone sensitivity in modulating hormone signaling.


Assuntos
Afídeos , Hormônios Juvenis , Animais , Afídeos/metabolismo , Feminino , Proteínas de Insetos/metabolismo , Hormônios Juvenis/metabolismo , Músculos/metabolismo , Reprodução , Asas de Animais/metabolismo
7.
J Virol ; 98(4): e0156523, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38445884

RESUMO

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a worldwide threat in the past 3 years. Although it has been widely and intensively investigated, the mechanism underlying the coronavirus-host interaction requires further elucidation, which may contribute to the development of new antiviral strategies. Here, we demonstrated that the host cAMP-responsive element-binding protein (CREB1) interacts with the non-structural protein 13 (nsp13) of SARS-CoV-2, a conserved helicase for coronavirus replication, both in cells and in lung tissues subjected to SARS-CoV-2 infection. The ATPase and helicase activity of viral nsp13 were shown to be potentiated by CREB1 association, as well as by Protein kinase A (PKA)-mediated CREB1 activation. SARS-CoV-2 replication is significantly suppressed by PKA Cα, cAMP-activated protein kinase catalytic subunit alpha (PRKACA), and CREB1 knockdown or inhibition. Consistently, the CREB1 inhibitor 666-15 has shown significant antiviral effects against both the WIV04 strain and the Omicron strain of the SARS-CoV-2. Our findings indicate that the PKA-CREB1 signaling axis may serve as a novel therapeutic target against coronavirus infection. IMPORTANCE: In this study, we provide solid evidence that host transcription factor cAMP-responsive element-binding protein (CREB1) interacts directly with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) helicase non-structural protein 13 (nsp13) and potentiate its ATPase and helicase activity. And by live SARS-CoV-2 virus infection, the inhibition of CREB1 dramatically impairs SARS-CoV-2 replication in vivo. Notably, the IC50 of CREB1 inhibitor 666-15 is comparable to that of remdesivir. These results may extend to all highly pathogenic coronaviruses due to the conserved nsp13 sequences in the virus.


Assuntos
RNA-Polimerase RNA-Dependente de Coronavírus , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Proteínas Quinases Dependentes de AMP Cíclico , Interações entre Hospedeiro e Microrganismos , SARS-CoV-2 , Proteínas não Estruturais Virais , Replicação Viral , Humanos , Adenosina Trifosfatases/metabolismo , Antivirais/farmacologia , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , COVID-19/virologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/deficiência , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , DNA Helicases/metabolismo , Concentração Inibidora 50 , RNA Helicases/metabolismo , SARS-CoV-2/classificação , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , SARS-CoV-2/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Feminino , Animais , Camundongos
8.
Nature ; 575(7784): 618-621, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31776491

RESUMO

All stellar-mass black holes have hitherto been identified by X-rays emitted from gas that is accreting onto the black hole from a companion star. These systems are all binaries with a black-hole mass that is less than 30 times that of the Sun1-4. Theory predicts, however, that X-ray-emitting systems form a minority of the total population of star-black-hole binaries5,6. When the black hole is not accreting gas, it can be found through radial-velocity measurements of the motion of the companion star. Here we report radial-velocity measurements taken over two years of the Galactic B-type star, LB-1. We find that the motion of the B star and an accompanying Hα emission line require the presence of a dark companion with a mass of [Formula: see text] solar masses, which can only be a black hole. The long orbital period of 78.9 days shows that this is a wide binary system. Gravitational-wave experiments have detected black holes of similar mass, but the formation of such massive ones in a high-metallicity environment would be extremely challenging within current stellar evolution theories.

9.
Proc Natl Acad Sci U S A ; 119(38): e2203708119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095219

RESUMO

Fucoxanthin is a major light-harvesting pigment in ecologically important algae such as diatoms, haptophytes, and brown algae (Phaeophyceae). Therefore, it is a major driver of global primary productivity. Species of these algal groups are brown colored because the high amounts of fucoxanthin bound to the proteins of their photosynthetic machineries enable efficient absorption of green light. While the structure of these fucoxanthin-chlorophyll proteins has recently been resolved, the biosynthetic pathway of fucoxanthin is still unknown. Here, we identified two enzymes central to this pathway by generating corresponding knockout mutants of the diatom Phaeodactylum tricornutum that are green due to the lack of fucoxanthin. Complementation of the mutants with the native genes or orthologs from haptophytes restored fucoxanthin biosynthesis. We propose a complete biosynthetic path to fucoxanthin in diatoms and haptophytes based on the carotenoid intermediates identified in the mutants and in vitro biochemical assays. It is substantially more complex than anticipated and reveals diadinoxanthin metabolism as the central regulatory hub connecting the photoprotective xanthophyll cycle and the formation of fucoxanthin. Moreover, our data show that the pathway evolved by repeated duplication and neofunctionalization of genes for the xanthophyll cycle enzymes violaxanthin de-epoxidase and zeaxanthin epoxidase. Brown algae lack diadinoxanthin and the genes described here and instead use an alternative pathway predicted to involve fewer enzymes. Our work represents a major step forward in elucidating the biosynthesis of fucoxanthin and understanding the evolution, biogenesis, and regulation of the photosynthetic machinery in algae.


Assuntos
Diatomáceas , Phaeophyceae , Xantofilas , Vias Biossintéticas/genética , Carotenoides/metabolismo , Diatomáceas/genética , Diatomáceas/metabolismo , Phaeophyceae/metabolismo , Xantofilas/metabolismo
10.
Nano Lett ; 24(15): 4672-4681, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38587873

RESUMO

The bifunctional oxygen electrocatalyst is the Achilles' heel of achieving robust reversible Zn-air batteries (ZABs). Herein, durable bifunctional oxygen electrocatalysis in alkaline media is realized on atomic Fe-N4-C sites reinforced by NixCo3-xO4 (NixCo3-xO4@Fe1/NC). Compared with that of pristine Fe1/NC, the stability of the oxygen evolution reaction (OER) is increased 10 times and the oxygen reduction reaction (ORR) performance is also improved. The steric hindrance alters the valence electron at the Fe-N4-C sites, resulting in a shorter Fe-N bond and enhanced stability of the Fe-N4-C sites. The corresponding solid-state ZABs exhibit an ultralong lifespan (>460 h at 5 mA cm-2) and high rate performance (from 2 to 50 mA cm-2). Furthermore, the structural evolution of NixCo3-xO4@Fe1/NC before and after the OER and ORR as well as charge-discharge cycling is explored. This work develops an efficient strategy for improving bifunctional oxygen electrocatalysis and possibly other processes.

11.
J Biol Chem ; 299(2): 102789, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36509144

RESUMO

α-Isopropylmalate synthase (IPMS) catalyzes the first step in leucine (Leu) biosynthesis and is allosterically regulated by the pathway end product, Leu. IPMS is a dimeric enzyme with each chain consisting of catalytic, accessory, and regulatory domains, with the accessory and regulatory domains of each chain sitting adjacent to the catalytic domain of the other chain. The IPMS crystal structure shows significant asymmetry because of different relative domain conformations in each chain. Owing to the challenges posed by the dynamic and asymmetric structures of IPMS enzymes, the molecular details of their catalytic and allosteric mechanisms are not fully understood. In this study, we have investigated the allosteric feedback mechanism of the IPMS enzyme from the bacterium that causes meningitis, Neisseria meningitidis (NmeIPMS). By combining molecular dynamics simulations with small-angle X-ray scattering, mutagenesis, and heterodimer generation, we demonstrate that Leu-bound NmeIPMS is in a rigid conformational state stabilized by asymmetric interdomain polar interactions. Furthermore, we found removing these polar interactions by mutagenesis impaired the allosteric response without compromising Leu binding. Our results suggest that the allosteric inhibition of NmeIPMS is achieved by restricting the flexibility of the accessory and regulatory domains, demonstrating that significant conformational flexibility is required for catalysis.


Assuntos
2-Isopropilmalato Sintase , Biocatálise , Leucina , Neisseria meningitidis , Domínios Proteicos , 2-Isopropilmalato Sintase/química , 2-Isopropilmalato Sintase/genética , 2-Isopropilmalato Sintase/metabolismo , Regulação Alostérica , Domínio Catalítico , Leucina/biossíntese , Leucina/química , Leucina/metabolismo , Neisseria meningitidis/enzimologia , Neisseria meningitidis/metabolismo , Simulação de Dinâmica Molecular , Espalhamento a Baixo Ângulo , Difração de Raios X , Multimerização Proteica , Mutagênese , Maleabilidade
12.
J Biol Chem ; 299(1): 102734, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423684

RESUMO

USP14 deubiquitinates ERα to maintain its stability in ECEndometrial cancer (EC) is one of the common gynecological malignancies of which the incidence has been rising for decades. It is considered that continuously unopposed estrogen exposure is the main risk factor for EC initiation. Thus, exploring the modulation of estrogen/estrogen receptor α (ERα) signaling pathway in EC would be helpful to well understand the mechanism of EC development and find the potential target for EC therapy. Ubiquitin-specific peptidase 14 (USP14), a member of the proteasome-associated deubiquitinating enzyme family, plays a crucial role in a series of tumors. However, the function of USP14 in EC is still elusive. Here, our results have demonstrated that USP14 is highly expressed in EC tissues compared with that in normal endometrial tissues, and higher expression of USP14 is positively correlated with poor prognosis. Moreover, USP14 maintains ERα stability through its deubiquitination activity. Our results further demonstrate that USP14 depletion decreases the expression of ERα-regulated genes in EC-derived cell lines. Moreover, knockdown of USP14 or USP14-specific inhibitor treatment significantly suppresses cell growth and migration in EC cell lines or in mice. We further provide the evidence to show that the effect of USP14 on EC cell growth, if not all, at least is partially related to ERα pathway. Our study provides new sights for USP14 to be a potential therapeutic target for the treatment of EC, especially for EC patients with fertility preservation needs.


Assuntos
Neoplasias do Endométrio , Receptor alfa de Estrogênio , Ubiquitina Tiolesterase , Animais , Feminino , Humanos , Camundongos , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios , Ubiquitina Tiolesterase/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitinação
13.
J Hepatol ; 80(2): 293-308, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38450598

RESUMO

BACKGROUND & AIMS: The role of solute carrier family 25 member 15 (SLC25A15), a critical component of the urea cycle, in hepatocellular carcinoma (HCC) progression remains poorly understood. This study investigated the impact of SLC25A15 on HCC progression and its mechanisms. METHODS: We systematically investigated the function of SLC25A15 in HCC progression using large-scale data mining and cell, animal, and organoid models. Furthermore, we analyzed its involvement in reprogramming glutamine metabolism. RESULTS: SLC25A15 expression was significantly decreased in HCC tissues, and patients with low SLC25A15 levels had a poorer prognosis. Hypoxia-exposed HCC cells or tissues had lower SLC25A15 expression. A positive correlation between HNF4A, a transcription factor suppressed by hypoxia, and SLC25A15 was observed in both HCC tissues and cells. Modulating HNF4A levels altered SLC25A15 mRNA levels. SLC25A15 upregulated SLC1A5, increasing glutamine uptake. The reactive metabolic pathway of glutamine was increased in SLC25A15-deficient HCC cells, providing energy for HCC progression through additional lipid synthesis. Ammonia accumulation due to low SLC25A15 levels suppressed the expression of OGDHL (oxoglutarate dehydrogenase L), a switch gene that mediates SLC25A15 deficiency-induced reprogramming of glutamine metabolism. SLC25A15-deficient HCC cells were more susceptible to glutamine deprivation and glutaminase inhibitors. Intervening in glutamine metabolism increased SLC25A15-deficient HCC cells' response to anti-PD-L1 treatment. CONCLUSION: SLC25A15 is hypoxia-responsive in HCC, and low SLC25A15 levels result in glutamine reprogramming through SLC1A5 and OGDHL regulation, promoting HCC progression and regulating cell sensitivity to anti-PD-L1. Interrupting the glutamine-derived energy supply is a potential therapeutic strategy for treating SLC25A15-deficient HCC. IMPACT AND IMPLICATIONS: We first demonstrated the tumor suppressor role of solute carrier family 25 member 15 (SLC25A15) in hepatocellular carcinoma (HCC) and showed that its deficiency leads to reprogramming of glutamine metabolism to promote HCC development. SLC25A15 can serve as a potential biomarker to guide the development of precision therapeutic strategies aimed at targeting glutamine deprivation. Furthermore, we highlight that the use of an inhibitor of glutamine utilization can enhance the sensitivity of low SLC25A15 HCC to anti-PD-L1 therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Carcinoma Hepatocelular/genética , Glutamina , Neoplasias Hepáticas/genética , Hipóxia/genética , Transporte Biológico , Antígenos de Histocompatibilidade Menor , Sistema ASC de Transporte de Aminoácidos/genética
14.
Ann Surg ; 280(2): 212-221, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38708880

RESUMO

OBJECTIVE: To determine the feasibility, efficacy, and safety of early cold stored platelet transfusion compared with standard care resuscitation in patients with hemorrhagic shock. BACKGROUND: Data demonstrating the safety and efficacy of early cold stored platelet transfusion are lacking following severe injury. METHODS: A phase 2, multicenter, randomized, open label, clinical trial was performed at 5 US trauma centers. Injured patients at risk of large volume blood transfusion and the need for hemorrhage control procedures were enrolled and randomized. The intervention was the early transfusion of a single apheresis cold stored platelet unit, stored for up to 14 days versus standard care resuscitation. The primary outcome was feasibility and the principal clinical outcome for efficacy and safety was 24-hour mortality. RESULTS: Mortality at 24 hours was 5.9% in patients who were randomized to early cold stored platelet transfusion compared with 10.2% in the standard care arm (difference, -4.3%; 95% CI, -12.8% to 3.5%; P =0.26). No significant differences were found for any of the prespecified ancillary outcomes. Rates of arterial and/or venous thromboembolism and adverse events did not differ across treatment groups. CONCLUSIONS AND RELEVANCE: In severely injured patients, early cold stored platelet transfusion is feasible, safe and did not result in a significant lower rate of 24-hour mortality. Early cold stored platelet transfusion did not result in a higher incidence of arterial and/or venous thrombotic complications or adverse events. The storage age of the cold stored platelet product was not associated with significant outcome differences. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT04667468.


Assuntos
Preservação de Sangue , Transfusão de Plaquetas , Choque Hemorrágico , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Choque Hemorrágico/terapia , Choque Hemorrágico/etiologia , Preservação de Sangue/métodos , Estudos de Viabilidade , Ferimentos e Lesões/terapia , Ferimentos e Lesões/complicações , Resultado do Tratamento , Ressuscitação/métodos , Temperatura Baixa
15.
J Intern Med ; 295(4): 557-568, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38111091

RESUMO

BACKGROUND: Effects of intensive blood pressure (BP) control on cognitive outcomes in patients with excess orthostatic BP changes are unclear. We aimed to evaluate whether orthostatic BP changes modified the effects of BP intervention on cognitive impairment. METHODS: We analyzed 8547 participants from the Systolic Blood Pressure Intervention Trial Memory and cognition IN Decreased Hypertension. Associations between orthostatic BP changes and incident cognitive outcomes were evaluated by restricted cubic spline curves based on Cox models. The interactions between orthostatic BP changes and intensive BP intervention were assessed. RESULTS: The U-shaped associations were observed between baseline orthostatic systolic BP changes and cognitive outcomes. However, there were insignificant interactions between either change in orthostatic systolic BP (P for interaction = 0.81) or diastolic BP (P for interaction = 0.32) and intensive BP intervention for the composite outcome of probable dementia or mild cognitive impairment (MCI). The hazard ratio of intensive versus standard target for the composite cognitive outcome was 0.82 (95% CI 0.50-1.35) in those with an orthostatic systolic BP reduction of >20 mmHg and 0.41 (95% CI 0.21-0.80) in those with an orthostatic systolic BP increase of >20 mmHg. Results were similar for probable dementia and MCI. The annual changes in global cerebral blood flow (P for interaction = 0.86) consistently favored intensive BP treatment across orthostatic systolic BP changes. CONCLUSION: Intensive BP control did not have a deteriorating effect on cognitive outcomes among hypertensive patients experiencing significant postural BP changes.


Assuntos
Disfunção Cognitiva , Demência , Hipertensão , Hipotensão Ortostática , Humanos , Pressão Sanguínea , Cognição , Hipertensão/tratamento farmacológico , Hipotensão Ortostática/psicologia
16.
Small ; 20(25): e2310227, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38196154

RESUMO

Perovskite solar cells (PSCs) have achieved revolutionary progress during the past decades with a rapidly boosting rate in power conversion efficiencies from 3.8% to 26.1%. However, high-efficiency PSCs with organic hole-transporting materials (HTMs) suffer from inferior long-term stability and high costs. The replacement of organic HTMs with inorganic counterparts such as metal oxides can solve the above-mentioned problems to realize highly robust and cost-effective PSCs. Nevertheless, the widely used simple metal oxide-based HTMs are limited by the low conductivity and poor light transmittance due to the fixed atomic environment. As an emerging family of inorganic HTMs, complex metal oxides with superior structural/compositional flexibility have attracted rapidly increasing interest recently, showing superior carrier conductivity/mobility and superb light transmittance. Herein, the recent advancements in the design and development of complex metal oxide-based HTMs for high-performance PSCs are summarized by emphasizing the superiority of complex metal oxides as HTMs over simple metal oxide-based counterparts. Consequently, several distinct strategies for the design of complex metal oxide-based HTMs are proposed. Last, the future directions and remaining challenges of inorganic complex metal oxide-based HTMs for PSCs are also presented. This review aims to provide valuable guidelines for the further advancements of robust, high-efficiency, and low-cost PSCs.

17.
Planta ; 259(5): 104, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551672

RESUMO

MAIN CONCLUSION: The post-transcriptional gene regulatory pathway and small RNA pathway play important roles in regulating the rapid and long-term response of Rhododendron moulmainense to high-temperature stress. The Rhododendron plays an important role in maintaining ecological balance. However, it is difficult to domesticate for use in urban ecosystems due to their strict optimum growth temperature condition, and its evolution and adaptation are little known. Here, we combined transcriptome and small RNAome to reveal the rapid response and long-term adaptability regulation strategies in Rhododendron moulmainense under high-temperature stress. The post-transcriptional gene regulatory pathway plays important roles in stress response, in which the protein folding pathway is rapidly induced at 4 h after heat stress, and alternative splicing plays an important role in regulating gene expression at 7 days after heat stress. The chloroplasts oxidative damage is the main factor inhibiting photosynthesis efficiency. Through WGCNA analysis, we identified gene association patterns and potential key regulatory genes responsible for maintaining the ROS steady-state under heat stress. Finally, we found that the sRNA synthesis pathway is induced under heat stress. Combined with small RNAome, we found that more miRNAs are significantly changed under long-term heat stress. Furthermore, MYBs might play a central role in target gene interaction network of differentially expressed miRNAs in R. moulmainense under heat stress. MYBs are closely related to ABA, consistently, ABA synthesis and signaling pathways are significantly inhibited, and the change in stomatal aperture is not obvious under heat stress. Taken together, we gained valuable insights into the transplantation and long-term conservation domestication of Rhododendron, and provide genetic resources for genetic modification and molecular breeding to improve heat resistance in Rhododendron.


Assuntos
MicroRNAs , Rhododendron , Transcriptoma/genética , Rhododendron/genética , Rhododendron/metabolismo , Ecossistema , Resposta ao Choque Térmico/genética , MicroRNAs/genética , Perfilação da Expressão Gênica
18.
J Med Virol ; 96(2): e29445, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38299743

RESUMO

Membrane-associated RING-CH (MARCH) family proteins were recently reported to inhibit viral replication through multiple modes. Previous work showed that human MARCH8 blocked Ebola virus (EBOV) glycoprotein (GP) maturation. Our study here demonstrates that human MARCH1 and MARCH2 share a similar pattern to MARCH8 in restricting EBOV GP-pseudotyped viral infection. Human MARCH1 and MARCH2 retain EBOV GP at the trans-Golgi network, reduce its cell surface display, and impair EBOV GP-pseudotyped virions infectivity. Furthermore, we uncover that the host proprotein convertase furin could interact with human MARCH1/2 and EBOV GP intracellularly. Importantly, the furin P domain is verified to be recognized by MARCH1/2/8, which is critical for their blocking activities. Besides, bovine MARCH2 and murine MARCH1 also impair EBOV GP proteolytic processing. Altogether, our findings confirm that MARCH1/2 proteins of different mammalian origins showed a relatively conserved feature in blocking EBOV GP cleavage, which could provide clues for subsequent MARCHs antiviral studies and may facilitate the development of novel strategies to antagonize enveloped virus infection.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Bovinos , Humanos , Camundongos , Linhagem Celular , Furina/metabolismo , Glicoproteínas , Mamíferos/metabolismo , Proteínas de Membrana/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
19.
Opt Express ; 32(7): 12243-12256, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571053

RESUMO

Integral imaging is a kind of true three-dimensional (3D) display technology that uses a lens array to reconstruct vivid 3D images with full parallax and true color. In order to present a high-quality 3D image, it's vital to correct the axial position error caused by the misalignment and deformation of the lens array which makes the reconstructed lights deviate from the correct directions, resulting in severe voxel drifting and image blurring. We proposed a sub-pixel marking method to measure the axial position error of the lenses with great accuracy by addressing the sub-pixels under each lens and forming a homologous sub-pixel pair. The proposed measurement method relies on the geometric center alignment of image points, which is specifically expressed as the overlap between the test 3D voxel and the reference 3D voxel. Hence, measurement accuracy could be higher. Additionally, a depth-based sub-pixel correction method was proposed to eliminate the voxel drifting. The proposed correction method takes the voxel depth into consideration in the correction coefficient, and achieves accurate error correction for 3D images with different depths. The experimental results well confirmed that the proposed measuring and correction methods can greatly suppress the voxel drifting caused by the axial position error of the lenses, and greatly improve the 3D image quality.

20.
Opt Express ; 32(1): 79-91, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175064

RESUMO

In non-Hermitian systems, enhancing sensitivity under exceptional point (EP) conditions offers an ideal solution for reconciling the trade-off between sensitivity and size constraints in sensing applications. However, practical application is limited by undesired sensitivity to external fluctuations, noise, and errors in signal amplification synchronization. This paper presents a precisely controlled EP tracking and detection system (EPTDS) that achieves long-term rapid tracking and locking near the EP by constructing a second-order non-Hermitian optical sensing unit, employing an optical power adaptive control method, and utilizing a combinatorial demodulation-based dual-loop cascaded control (CDCC) technique to selectively suppress traditional noise at different frequencies. The system locking time is 10 ms, and in room temperature conditions, the output frequency error over 1 hour is reduced by more than 30 times compared to before locking. To assess its sensing capabilities, the EPTDS undergoes testing in a rotational experiment based on the Sagnac effect, with the output bias instability based on Allan deviation measured at 0.036 °/h. This is the best result for EP-enhanced angular rate sensing that we are aware of that has been reported. The EPTDS method can be extended to various sensing fields, providing a new path for transitioning non-Hermitian sensing from the laboratory to practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA