Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Allergy Asthma Immunol ; 133(1): 64-72.e4, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38499061

RESUMO

BACKGROUND: Non-neuronal cholinergic system (NNCS) contributes to various inflammatory airway diseases. However, the role of NNCS in severe asthma (SA) remains largely unexplored. OBJECTIVE: To explore airway NNCS in SA. METHODS: In this prospective cohort study based on the Australasian Severe Asthma Network in a real-world setting, patients with SA (n = 52) and non-SA (n = 104) underwent clinical assessment and sputum induction. The messenger RNA (mRNA) levels of NNCS components and proinflammatory cytokines in the sputum were detected using real-time quantitative polymerase chain reaction, and the concentrations of acetylcholine (Ach)-related metabolites were evaluated using liquid chromatography coupled with tandem mass spectrometry. Asthma exacerbations were prospectively investigated during the next 12 months. The association between NNCS and future asthma exacerbations was also analyzed. RESULTS: Patients with SA were less controlled and had worse airway obstruction, a lower bronchodilator response, higher doses of inhaled corticosteroids, and more add-on treatments. The sputum mRNA levels of NNCS components, such as muscarinic receptors M1R-M5R, OCT3, VACHT, and ACHE; proinflammatory cytokines; and Ach concentration in the SA group were significantly higher than those in the non-SA group. Furthermore, most NNCS components positively correlated with non-type (T) 2 inflammatory profiles, such as sputum neutrophils, IL8, and IL1B. In addition, the mRNA levels of sputum M2R, M3R, M4R, M5R, and VACHT were independently associated with an increased risk of moderate-to-severe asthma exacerbations. CONCLUSION: This study indicated that the NNCS was significantly activated in SA, leading to elevated Ach and was associated with clinical features, non-T2 inflammation, and future exacerbations of asthma, highlighting the potential role of the NNCS in the pathogenesis of SA. CLINICAL TRIAL REGISTRATION: ChiCTR-OOC-16009529 (http://www.chictr.org.cn).


Assuntos
Asma , Citocinas , Sistema Colinérgico não Neuronal , Escarro , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Acetilcolina/metabolismo , Asma/imunologia , Asma/metabolismo , Citocinas/metabolismo , Progressão da Doença , Inflamação/metabolismo , Sistema Colinérgico não Neuronal/imunologia , Estudos Prospectivos , Índice de Gravidade de Doença , Escarro/metabolismo , Escarro/imunologia
2.
J Allergy Clin Immunol ; 149(4): 1270-1280, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34678326

RESUMO

BACKGROUND: Obesity is a risk factor for asthma, and obese asthmatic individuals are more likely to have severe, steroid-insensitive disease. How obesity affects the pathogenesis and severity of asthma is poorly understood. Roles for increased inflammasome-mediated neutrophilic responses, type 2 immunity, and eosinophilic inflammation have been described. OBJECTIVE: We investigated how obesity affects the pathogenesis and severity of asthma and identified effective therapies for obesity-associated disease. METHODS: We assessed associations between body mass index and inflammasome responses with type 2 (T2) immune responses in the sputum of 25 subjects with asthma. Functional roles for NLR family, pyrin domain-containing (NLRP) 3 inflammasome and T2 cytokine responses in driving key features of disease were examined in experimental high-fat diet-induced obesity and asthma. RESULTS: Body mass index and inflammasome responses positively correlated with increased IL-5 and IL-13 expression as well as C-C chemokine receptor type 3 expression in the sputum of subjects with asthma. High-fat diet-induced obesity resulted in steroid-insensitive airway hyperresponsiveness in both the presence and absence of experimental asthma. High-fat diet-induced obesity was also associated with increased NLRP3 inflammasome responses and eosinophilic inflammation in airway tissue, but not lumen, in experimental asthma. Inhibition of NLRP3 inflammasome responses reduced steroid-insensitive airway hyperresponsiveness but had no effect on IL-5 or IL-13 responses in experimental asthma. Depletion of IL-5 and IL-13 reduced obesity-induced NLRP3 inflammasome responses and steroid-insensitive airway hyperresponsiveness in experimental asthma. CONCLUSION: We found a relationship between T2 cytokine and NLRP3 inflammasome responses in obesity-associated asthma, highlighting the potential utility of T2 cytokine-targeted biologics and inflammasome inhibitors.


Assuntos
Asma , Inflamassomos , Citocinas , Humanos , Inflamassomos/metabolismo , Inflamação/metabolismo , Interleucina-13 , Interleucina-1beta , Interleucina-5 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Obesidade/complicações
3.
Thorax ; 77(5): 443-451, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34510013

RESUMO

INTRODUCTION: The significance of endoplasmic reticulum (ER) stress in asthma is unclear. Here, we demonstrate that ER stress and the unfolded protein response (UPR) are related to disease severity and inflammatory phenotype. METHODS: Induced sputum (n=47), bronchial lavage (n=23) and endobronchial biopsies (n=40) were collected from participants with asthma with varying disease severity, inflammatory phenotypes and from healthy controls. Markers for ER stress and UPR were assessed. These markers were also assessed in established eosinophilic and neutrophilic murine models of asthma. RESULTS: Our results demonstrate increased ER stress and UPR pathways in asthma and these are related to clinical severity and inflammatory phenotypes. Genes associated with ER protein chaperone (BiP, CANX, CALR), ER-associated protein degradation (EDEM1, DERL1) and ER stress-induced apoptosis (DDIT3, PPP1R15A) were dysregulated in participants with asthma and are associated with impaired lung function (forced expiratory volume in 1 s) and active eosinophilic and neutrophilic inflammation. ER stress genes also displayed a significant correlation with classic Th2 (interleukin-4, IL-4/13) genes, Th17 (IL-17F/CXCL1) genes, proinflammatory (IL-1b, tumour necrosis factor α, IL-8) genes and inflammasome activation (NLRP3) in sputum from asthmatic participants. Mice with allergic airway disease (AAD) and severe steroid insensitive AAD also showed increased ER stress signalling in their lungs. CONCLUSION: Heightened ER stress is associated with severe eosinophilic and neutrophilic inflammation in asthma and may play a crucial role in the pathogenesis of asthma.


Assuntos
Asma , Animais , Asma/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Humanos , Inflamação/metabolismo , Camundongos , Neutrófilos/metabolismo , Transdução de Sinais , Resposta a Proteínas não Dobradas
4.
Clin Exp Allergy ; 52(1): 59-69, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34142396

RESUMO

BACKGROUND: Type 2 inflammation is characterized by enhanced activity of interleukin (IL)-4, -5 and -13, and treatments targeting these pathways are available for treatment of severe asthma. At present, the pattern of pathway activity and the implications overlapping of pathway activity are unknown. OBJECTIVE: We hypothesized that clustering of airway mRNA expression would identify distinct molecular subtypes of severe asthma and thereby uncover the prevalence and overlap of pathway activity. METHODS: Sputum mRNA expression of genes related to expression of IL-5(CLC, CPA3 and DNASE1L3), IL-13(IL13Ra1, TNFSF14 and SERPINB2), T1/Th17 activity(IL1B, ALPL and CXCR2) and in vitro response to corticosteroids (FKBP512) and mepolizumab (ARAP3) was analysed in patients (n = 109) with severe asthma and healthy controls (n = 22). A cluster analysis of gene expression was performed. The response to a short course of OCS was assessed in a subset of patients (n = 29). RESULTS: Five molecular clusters were identified. Three had abundant T2 gene expression of which two (n = 39 and n = 9) were characterized by abundant expression of both IL-13- and IL-5-related genes. The last (n = 6) had only abundant IL-5-related gene expression. These T2-high molecular clusters could not be distinguished using T2 biomarkers. T2- and Th1/Th17-related mRNA expression were co-expressed across all clusters. OCS significantly reduced T2 gene expression (CLC, IL13Ra1, SERPINB2 and ARAP3) and significantly increase expression of Th1/Th17-related genes (ALPL and CXCR2). CONCLUSIONS AND CLINICAL RELEVANCE: Clustering of airway mRNA expression identified five molecular clusters of severe asthma of which three were considered T2 high. Co-expression of IL-5- and IL-13-related genes at moderate levels was present in almost half of patients, while marked elevated expression of both was rare. In contrast to IL-5, clusters with isolated IL-13- and Th1/Th17-related gene expression were not identified.


Assuntos
Asma , Corticosteroides/uso terapêutico , Asma/diagnóstico , Asma/tratamento farmacológico , Asma/genética , Expressão Gênica , Humanos , Inflamação/metabolismo , Escarro/metabolismo
5.
Allergy ; 77(4): 1204-1215, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34510493

RESUMO

BACKGROUND: Neutrophilic asthma (NA) is a clinically important asthma phenotype, the cellular and molecular basis of which is not completely understood. Airway macrophages are long-lived immune cells that exert important homeostatic and inflammatory functions which are dysregulated in asthma. Unique transcriptomic programmes reflect varied macrophage phenotypes in vitro. We aimed to determine whether airway macrophages are transcriptomically altered in NA. METHODS: We performed RNASeq analysis on flow cytometry-isolated sputum macrophages comparing NA (n = 7) and non-neutrophilic asthma (NNA, n = 13). qPCR validation of RNASeq results was performed (NA n = 13, NNA n = 23). Pathway analysis (PANTHER, STRING) of differentially expressed genes (DEGs) was performed. Gene set variation analysis (GSVA) was used to test for enrichment of NA macrophage transcriptomic signatures in whole sputum microarray (cohort 1 - controls n = 16, NA n = 29, NNA n = 37; cohort 2 U-BIOPRED - controls n = 16, NA n = 47, NNA n = 57). RESULTS: Flow cytometry-sorting significantly enriched sputum macrophages (99.4% post-sort, 44.9% pre-sort, p < .05). RNASeq analysis confirmed macrophage purity and identified DEGs in NA macrophages. Selected DEGs (SLAMF7, DYSF, GPR183, CSF3, PI3, CCR7, all p < .05 NA vs. NNA) were confirmed by qPCR. Pathway analysis of NA macrophage DEGs was consistent with responses to bacteria, contribution to neutrophil recruitment and increased expression of phagocytosis and efferocytosis factors. GSVA demonstrated neutrophilic macrophage gene signatures were significantly enriched in whole sputum microarray in NA vs. NNA and controls in both cohorts. CONCLUSIONS: We demonstrate a pathophysiologically relevant sputum macrophage transcriptomic programme in NA. The finding that there is transcriptional activation of inflammatory programmes in cell types other than neutrophils supports the concept of NA as a specific endotype.


Assuntos
Asma , Transcriptoma , Asma/diagnóstico , Asma/genética , Humanos , Macrófagos , Neutrófilos , Escarro
6.
J Allergy Clin Immunol ; 148(2): 428-438, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33609626

RESUMO

BACKGROUND: Mast cells (MCs) and basophils are important in asthma pathophysiology, however direct measurement is difficult, and clinical and inflammatory associations in severe asthma are poorly understood. Transcriptomic hallmarks of MCs/basophils may allow their measurement in sputum using gene expression. OBJECTIVES: This study sought to develop and validate a sputum MC/basophil gene signature and investigate its relationship to inflammatory and clinical characteristics of severe asthma. METHODS: A total of 134 candidate MC/basophil genes (identified by the Immunological Genome Project Consortium) were screened in sputum microarray for differential expression among control subjects (n = 18), patients with eosinophilic (n = 29), and patients with noneosinophilic asthma (n = 30). Candidate genes were validated by confirming correlation of gene expression with flow cytometry-quantified sputum MCs and basophils in a separate asthma cohort (n = 20). The validated gene signature was measured in a severe asthma cohort (n = 81), and inflammatory and clinical associations were tested. RESULTS: Through microarray screening and subsequent validation, we found quantitative PCR gene expression of 8 targets correlated with sputum MCs/basophils: TPSAB1/TPSB2, CPA3, ENO2, GATA2, KIT, GPR56, HDC, SOCS2. In severe asthma, MC/basophil genes were associated with eosinophilic airway inflammation (GATA2, TPSB2, CPA3, GPR56, HDC, SOCS2), blood eosinophils (TPSB2, CPA3, GATA2, SOCS2, FCER1A, HDC), fractional exhaled NO (GATA2, SOCS2), decreased lung function (KIT, ENO2), and moderate exacerbation history (GATA2, SOCS2). CONCLUSIONS: Quantitative PCR-based measures reflect varying sputum MC/basophil abundance, demonstrating associations of MCs/basophils with eosinophilic inflammation, spirometry and exacerbation history in severe asthma.


Assuntos
Asma , Basófilos , Regulação da Expressão Gênica/imunologia , Mastócitos , Escarro/imunologia , Adulto , Idoso , Asma/imunologia , Asma/patologia , Basófilos/imunologia , Basófilos/patologia , Feminino , Humanos , Inflamação/imunologia , Inflamação/patologia , Masculino , Mastócitos/imunologia , Mastócitos/patologia , Pessoa de Meia-Idade , Índice de Gravidade de Doença
7.
Clin Exp Allergy ; 51(10): 1279-1294, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34245071

RESUMO

BACKGROUND: Severe asthma is a complex disease. Transcriptomic profiling has contributed to understanding the pathogenesis of asthma, especially type-2 inflammation. However, there is still poor understanding of non-type-2 asthma, and consequently, there are limited treatment options. OBJECTIVE: The aim of this study was to identify differentially expressed genes (DEGs) and pathways in endobronchial biopsies associated with inflammatory phenotypes of severe asthma. METHODS: This cross-sectional study examined endobronchial biopsies from 47 adults with severe asthma (neutrophilic asthma (NA) n = 9, eosinophilic asthma (EA) n = 22 and paucigranulocytic asthma (PGA) n = 16) and 13 healthy controls (HC). RNA was extracted and transcriptomic profiles generated (Illumina Humanref-12 V4) and analysed using GeneSpring GX14.9.1. Pathway identification using Ingenuity Pathway Analysis. RESULTS: NA had the most distinct profile, with signature of 60 top-ranked DEGs (FC >±2) including genes associated with innate immunity response, neutrophil degranulation and IL-10 signalling. NA presented enrichment to pathways previously linked to neutrophilic inflammation; dendritic cell maturation, Th1, TREM1, inflammasome, Th17 and p38 MAPK, as well as novel links to neuroinflammation, NFAT and PKCθ signalling. EA presented similar transcriptomic profiles to PGA and HC. Despite the higher proportion of bacterial colonization in NA, no changes were observed in the transcriptomic profiles of severe asthma culture positive compared with severe asthma culture negative. CONCLUSIONS & CLINICAL RELEVANCE: NA features a distinct transcriptomic profile with seven pathways enriched in NA compared to EA, PGA and HC. All those with severe asthma had significant enrichment for SUMOylation, basal cell carcinoma signalling and Wnt/ß-catenin pathways compared to HC, despite high-dose inhaled corticosteroids. These findings contribute to the understanding of mechanistic pathways in endobronchial biopsies associated with NA and identify potential novel treatment targets for severe asthma.


Assuntos
Asma , Transcriptoma , Biópsia , Estudos Transversais , Humanos , Inflamação/genética
8.
Clin Exp Allergy ; 51(2): 305-317, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33301598

RESUMO

BACKGROUND: Monocytes and macrophages are critical innate immune cells of the airways. Despite their differing functions, few clinical studies discriminate between them and little is known about their regulation in asthma. OBJECTIVE: We aimed to distinguish and quantify macrophages, monocytes and monocyte subsets in induced sputum and blood and examine their relationship with inflammatory and clinical features of asthma. METHODS: We applied flow cytometry to distinguish macrophages, monocytes and subsets in sputum and blood (n = 53; 45 asthma, 8 non-asthma) and a second asthma sputum cohort (n = 26). Monocyte subsets were identified by surface CD14/CD16 (CD14++ CD16- classical, CD14+ CD16+ intermediate and CD14+ CD16++ non-classical monocytes). Surface CD206, a marker of monocyte tissue differentiation, was measured in sputum. Relationship to airway inflammatory phenotype (neutrophilic n = 9, eosinophilic n = 14, paucigranulocytic n = 22) and asthma severity (severe n = 12, non-severe n = 33) was assessed. RESULTS: Flow cytometry- and microscope-quantified sputum differential cell proportions were significantly correlated. Sputum macrophage number was reduced (p = .036), while classical monocyte proportion was increased in asthma vs non-asthma (p = .032). Sputum classical monocyte number was significantly higher in neutrophilic vs paucigranulocytic asthma (p = .013). CD206- monocyte proportion and number were increased in neutrophilic vs eosinophilic asthma (p < .001, p = .013). Increased sputum classical and CD206- monocyte numbers in neutrophilic asthma were confirmed in the second cohort. Blood monocytes did not vary with airway inflammatory phenotype, but blood classical monocyte proportion and number were increased in severe vs non-severe asthma (p = .022, p = .011). CONCLUSION AND CLINICAL RELEVANCE: Flow cytometry allowed distinction of sputum macrophages, monocytes and subsets, revealing compartment-specific dysregulation of monocytes in asthma. We observed an increase in classical and CD206- monocytes in sputum in neutrophilic asthma, suggesting co-recruitment of monocytes and neutrophils to the airways in asthma. Our data suggest further investigation of how airway monocyte dysregulation impacts on asthma-related disease activity is merited.


Assuntos
Asma/imunologia , Inflamação/imunologia , Macrófagos Alveolares/imunologia , Monócitos/imunologia , Neutrófilos/imunologia , Adulto , Idoso , Asma/sangue , Estudos de Casos e Controles , Eosinófilos/imunologia , Feminino , Citometria de Fluxo , Humanos , Inflamação/sangue , Receptores de Lipopolissacarídeos/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos Alveolares/citologia , Macrófagos Alveolares/metabolismo , Masculino , Receptor de Manose/metabolismo , Pessoa de Meia-Idade , Monócitos/citologia , Monócitos/metabolismo , Fenótipo , Receptores de IgG/metabolismo , Índice de Gravidade de Doença , Escarro/citologia
9.
Clin Exp Allergy ; 51(9): 1144-1156, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34197676

RESUMO

BACKGROUND: A high fruit and vegetable (F&V) diet reduces asthma exacerbations in adults; this has not been examined in children to date. OBJECTIVE: To investigate the effect of a 6-month, high F&V diet on the time to first asthma exacerbation in children with asthma, in a parallel-group, randomized, controlled trial. METHODS: Children (aged 3-11 years) with asthma, history of exacerbations and usual low F&V intake (≤3 serves/day) were randomized to the intervention (high F&V diet) or control group (usual diet) for 6 months. The primary outcome was time to first exacerbation requiring medical intervention. Secondary outcomes included exacerbation rate, lung function, plasma TNF-α, CRP, and IL-6, faecal microbiota and peripheral blood mononuclear cell (PBMC) histone deacetylase (HDAC) activity and G-protein coupled receptor (GPR) 41/43 and HDAC (1-11) expression. RESULTS: 67 children were randomized between September 2015 and July 2018. F&V intake (difference in change (∆): 3.5 serves/day, 95% CI: [2.6, 4.4] p < 0.001) and plasma total carotenoids (∆: 0.44 µg/ml [0.19, 0.70] p = 0.001) increased after 6 months (intervention vs control). Time to first exacerbation (HR: 0.81, 95% CI: [0.38, 1.69], p = 0.569; control vs. intervention) and exacerbation rate (IRR: 0.84, [0.47, 1.49], p = 0.553; control vs. intervention) were similar between groups. In per-protocol analysis, airway reactance z-scores increased in the intervention versus control group (X5 ∆: 0.76 [0.04, 1.48] p = 0.038, X20 ∆: 0.93 [0.23, 1.64] p = 0.009) and changes in faecal microbiota were observed though there was no difference between groups in systemic inflammation or molecular mechanisms. In the control group, CRP and HDAC enzyme activity increased, while GPR41 expression decreased. No adverse events attributable to the interventions were observed. CONCLUSION & CLINICAL RELEVANCE: A high F&V diet did not affect asthma exacerbations over the 6-month intervention, though warrants further investigation as a strategy for improving lung function and protecting against systemic inflammation in children with asthma.


Assuntos
Asma/imunologia , Asma/fisiopatologia , Dieta/métodos , Frutas , Verduras , Criança , Pré-Escolar , Feminino , Humanos , Masculino
10.
Allergy ; 76(7): 2079-2089, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33470427

RESUMO

BACKGROUND: Airway and systemic eosinophilia are important treatable traits in both severe asthma and COPD. The molecular basis of eosinophilia in COPD is poorly understood but could involve type 2 cytokines (IL5, IL13) and prostaglandin D2 (PGD2 ). METHODS: This study included non-obstructive airways disease (OAD) controls (n = 19), a COPD cohort (n = 96) and a severe asthma cohort (n = 84). Demographics, exacerbation history, disease impact (SGRQ) and spirometry were assessed. Participants were categorized as eosinophilic using either sputum eosinophil proportion (≥3%) or blood eosinophil count (≥300/µL). Sputum type 2 inflammatory measures included PGD2 by ELISA and gene expression (qPCR) of IL5, IL13 and the haematopoietic PGD2 synthase (HPGDS). RESULTS: Type 2 markers did not differ across groups except HPGDS mRNA which was highest in non-OAD controls and lowest in COPD. IL5 and IL13 mRNA and PGD2 levels were significantly increased in eosinophilic vs non-eosinophilic severe asthma but did not differ between eosinophilic COPD and eosinophilic severe asthma or non-eosinophilic COPD. HPGDS expression was higher in eosinophilic severe asthma compared with eosinophilic COPD. Results were similar using sputum or blood eosinophil cut-offs. Sputum IL5 and IL13 were highly intercorrelated in severe asthma (r = 0.907, p < 0.001) and COPD (r = 0.824, p < 0.001), were moderately correlated with sputum eosinophils in severe asthma (IL5 r = 0.440, p < 0.001; IL13 r = 0.428, p < 0.001) and were weakly correlated in COPD (IL5 r = 0.245, p < 0.05; IL13 r = 0.317, p < 0.05). CONCLUSIONS: Molecular markers of type 2 airway inflammation do not differ between eosinophilic asthma and eosinophilic COPD; however, the relationship between eosinophilia and type 2 airway markers appears weaker in COPD than in severe asthma.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Eosinofilia Pulmonar , Asma/diagnóstico , Asma/genética , Eosinófilos , Humanos , Inflamação , Contagem de Leucócitos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética , Eosinofilia Pulmonar/diagnóstico , Escarro
11.
Allergy ; 76(7): 2090-2101, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33569770

RESUMO

BACKGROUND: The AMAZES randomized controlled trial demonstrated that long-term low-dose azithromycin treatment reduces exacerbations of poorly controlled asthma, but the therapeutic mechanisms remain unclear. Dysregulation of the inflammatory tumour necrosis factor (TNF) pathway is implicated in asthma and could be suppressed by azithromycin. We aimed to determine the inflammatory and clinical associations of soluble TNF signalling proteins (TNF receptors [TNFR] 1 and 2, TNF) in sputum and serum, and to test the effect of 48 weeks of azithromycin vs placebo on TNF markers. METHODS: Sputum supernatant and serum TNFR1, TNFR2 (n = 142; 75 azithromycin-treated, 67 placebo-treated) and TNF (n = 48; 22 azithromycin-treated, 26 placebo-treated) were measured by ELISA in an AMAZES trial sub-population at baseline and end of treatment. Baseline levels were compared between sputum inflammatory phenotypes, severe/non-severe asthma and frequent/non-frequent exacerbators. Effect of azithromycin on markers was tested using linear mixed models. RESULTS: Baseline sputum TNFR1 and TNFR2 were significantly increased in neutrophilic vs non-neutrophilic asthma phenotypes, while serum markers did not differ. Sputum TNFR1 and TNFR2 were increased in severe asthma and correlated with poorer lung function, worse asthma control and increasing age. Serum TNFR1 was also increased in severe asthma. Sputum and serum TNFR2 were increased in frequent exacerbators. Azithromycin treatment significantly reduced sputum TNFR2 and TNF relative to placebo, specifically in non-eosinophilic participants. CONCLUSIONS: We demonstrate dysregulation of TNF markers, particularly in the airways, that relates to clinically important phenotypes of asthma including neutrophilic and severe asthma. Suppression of dysregulated TNF signalling by azithromycin could contribute to its therapeutic mechanism.


Assuntos
Asma , Azitromicina , Antibacterianos/uso terapêutico , Asma/diagnóstico , Asma/tratamento farmacológico , Azitromicina/uso terapêutico , Biomarcadores , Humanos , Escarro , Fator de Necrose Tumoral alfa
12.
Respirology ; 26(3): 241-248, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33045125

RESUMO

BACKGROUND AND OBJECTIVE: Long-term data on children with PBB has been identified as a research priority. We describe the 5-year outcomes for children with PBB to ascertain the presence of chronic respiratory disease (bronchiectasis, recurrent PBB and asthma) and identify the risk factors for these. METHODS: Prospective cohort study was undertaken at the Queensland Children's Hospital, Brisbane, Australia, of 166 children with PBB and 28 controls (undergoing bronchoscopy for symptoms other than chronic wet cough). Monitoring was by monthly contact via research staff. Clinical review, spirometry and CT chest were performed as clinically indicated. RESULTS: A total of 194 children were included in the analysis. Median duration of follow-up was 59 months (IQR: 50-71 months) post-index PBB episode, 67.5% had ongoing symptoms and 9.6% had bronchiectasis. Significant predictors of bronchiectasis were recurrent PBB in year 1 of follow-up (ORadj = 9.6, 95% CI: 1.8-50.1) and the presence of Haemophilus influenzae in the BAL (ORadj = 5.1, 95% CI: 1.4-19.1). Clinician-diagnosed asthma at final follow-up was present in 27.1% of children with PBB. A significant BDR (FEV1 improvement >12%) was obtained in 63.5% of the children who underwent reversibility testing. Positive allergen-specific IgE (ORadj = 14.8, 95% CI: 2.2-100.8) at baseline and bronchomalacia (ORadj = 5.9, 95% CI: 1.2-29.7) were significant predictors of asthma diagnosis. Spirometry parameters were in the normal range. CONCLUSION: As a significant proportion of children with PBB have ongoing symptoms at 5 years, and outcomes include bronchiectasis and asthma, they should be carefully followed up clinically. Defining biomarkers, endotypes and mechanistic studies elucidating the different outcomes are now required.


Assuntos
Infecções Bacterianas , Bronquiectasia , Bronquite Crônica , Bronquite , Tosse/fisiopatologia , Bronquiectasia/epidemiologia , Bronquite/diagnóstico , Bronquite/epidemiologia , Criança , Humanos , Estudos Prospectivos
13.
Eur Respir J ; 55(3)2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31806719

RESUMO

RATIONALE: Treatable traits have been proposed as a new paradigm for airway disease management. OBJECTIVES: To characterise treatable traits in a severe asthma population and to determine the efficacy of targeting treatments to these treatable traits in severe asthma. METHODS: Participants (n=140) with severe asthma were recruited to a cross-sectional study and underwent a multidimensional assessment to characterise treatable traits. Eligible participants with severe asthma (n=55) participated in a 16-week parallel-group randomised controlled trial to determine the feasibility and efficacy of management targeted to predefined treatable traits, compared to usual care in a severe asthma clinic. The patient-reported outcome of health-related quality of life was the trial's primary end-point. MAIN RESULTS: Participants with severe asthma had a mean±sd of 10.44±3.03 traits per person, comprising 3.01±1.54 pulmonary and 4.85±1.86 extrapulmonary traits and 2.58±1.31 behavioural/risk factors. Individualised treatment that targeted the traits was feasible and led to significantly improved health-related quality of life (0.86 units, p<0.001) and asthma control (0.73, p=0.01). CONCLUSIONS: Multidimensional assessment enables detection of treatable traits and identifies a significant trait burden in severe asthma. Targeting these treatable traits using a personalised-medicine approach in severe asthma leads to improvements in health-related quality of life, asthma control and reduced primary care acute visits. Treatable traits may be an effective way to address the complexity of severe asthma.


Assuntos
Asma , Qualidade de Vida , Asma/tratamento farmacológico , Estudos Transversais , Humanos , Pulmão , Fenótipo
14.
Clin Exp Allergy ; 50(6): 696-707, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32291815

RESUMO

BACKGROUND: Mast cells (MCs) are innate immune cells that regulate atopic and non-atopic inflammation in the airways. MCs play a critical role in the pathogenesis of asthma, yet their relationship to airway and systemic inflammation and clinical characteristics of asthma is poorly understood. OBJECTIVE: To quantify MCs in induced sputum samples and understand their relationship to airway and circulatory immune cells, and clinical variables in asthma. METHODS: We employed flow cytometry of sputum samples to quantify MCs, basophils and other immune cells in 51 participants (45 asthma and 6 non-asthma controls). Relationship of MCs to airway (n = 45) and blood (n = 19) immune cells, participant demographics, asthma history, spirometry and airways hyperresponsiveness (AHR) to hypertonic saline was determined by correlation and comparison of cut-off-based sputum MC high vs low participants. RESULTS: Mast cells, basophils and eosinophils were increased in asthma vs non-asthma control sputum. In asthma sputum, MCs, basophils and eosinophils were significantly intercorrelated, and MCs and basophils were elevated in participants with eosinophilic asthma. MCs and basophils, but not eosinophils, correlated with AHR. Sputum MC high asthma was characterized by an increased proportion of participants with uncontrolled asthma and reduced FEV1 and FVC. Trends towards similar clinical associations with elevated MCs were observed in a paucigranulocytic subpopulation (n = 15) lacking airway eosinophilia or neutrophilia. Receiver operator characteristic (ROC) analysis showed peripheral blood eosinophil (PBE) count predicted elevated sputum eosinophils and basophils, but not MCs. CONCLUSIONS AND CLINICAL RELEVANCE: Sputum MCs are elevated in asthma, and their measurement may be useful as they relate to key clinical features of asthma (spirometry, asthma control, AHR). PBE count did not predict airway MC status, suggesting direct measurement of airway MCs by sensitive methods such as flow cytometry should be further developed.


Assuntos
Asma/imunologia , Citometria de Fluxo , Mastócitos/imunologia , Escarro/imunologia , Adulto , Idoso , Asma/patologia , Feminino , Humanos , Inflamação/imunologia , Inflamação/patologia , Masculino , Mastócitos/patologia , Pessoa de Meia-Idade
15.
Respirology ; 25(7): 709-718, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31808595

RESUMO

BACKGROUND AND OBJECTIVE: Severe asthma is responsible for a disproportionate burden of illness and healthcare costs spent on asthma. This study analyses sputum transcriptomics to investigate the mechanisms and novel treatment targets of severe asthma. METHODS: Induced sputum samples were collected in a cross-sectional study from participants with severe asthma (n = 12, defined as per GINA criteria), non-severe uncontrolled (n = 21) and controlled asthma (n = 21) and healthy controls (n = 15). Sputum RNA was extracted and transcriptomic profiles were generated (Illumina HumanRef-8 V2) and analysed (GeneSpring). Sputum protein lysates were analysed for p38 activation in a validation study (n = 24 asthma, n = 8 healthy) by western blotting. RESULTS: There were 2166 genes differentially expressed between the four groups. In severe asthma, the expression of 1875, 1308 and 563 genes was altered compared to healthy controls, controlled and uncontrolled asthma, respectively. Of the 1875 genes significantly different to healthy controls, 123 were >2-fold change from which four networks were identified. Thirty genes (>2-fold change) were significantly different in severe asthma compared to both controlled asthma and healthy controls. There was enrichment of genes in the p38 signalling pathway that were associated with severe asthma. Phosphorylation of p38 was increased in a subset of severe asthma samples, correlating with neutrophilic airway inflammation. CONCLUSION: Severe asthma is associated with substantial differences in sputum gene expression that underlie unique cellular mechanisms. The p38 signalling pathway may be important in the pathogenesis of severe asthma, and future investigations into p38 inhibition are warranted as a 'non-Th2' therapeutic option.


Assuntos
Asma/genética , RNA Mensageiro/metabolismo , Escarro/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Adulto , Idoso , Asma/metabolismo , Asma/fisiopatologia , Estudos de Casos e Controles , Biologia Computacional , Estudos Transversais , Feminino , Volume Expiratório Forçado , Perfilação da Expressão Gênica , Humanos , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Neutrófilos/patologia , Fosforilação , Índice de Gravidade de Doença , Transdução de Sinais , Transcriptoma , Capacidade Vital , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
J Allergy Clin Immunol ; 143(1): 305-315, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29857009

RESUMO

BACKGROUND: Both obesity and high dietary fat intake activate the nucleotide oligomerization domain-like receptor protein 3 (NLRP3) inflammasome. OBJECTIVE: We aimed to examine NLRP3 inflammasome activity in the airways of obese asthmatic patients after macronutrient overload and in immune cells challenged by inflammasome triggers. METHODS: Study 1 was a cross-sectional observational study of nonobese (n = 51) and obese (n = 76) asthmatic adults. Study 2 was a randomized, crossover, acute feeding study in 23 asthmatic adults (n = 12 nonobese and n = 11 obese subjects). Subjects consumed 3 isocaloric meals on 3 separate occasions (ie, saturated fatty acid, n-6 polyunsaturated fatty acid, and carbohydrate) and were assessed at 0 and 4 hours. For Studies 1 and 2, airway inflammation was measured based on sputum differential cell counts, IL-1ß protein levels (ELISA), and sputum cell gene expression (Nanostring nCounter). In Study 3 peripheral blood neutrophils and monocytes were isolated by using Ficoll density gradient and magnetic bead separation and incubated with or without palmitic acid, LPS, or TNF-α for 24 hours, and IL-1ß release was measured (ELISA). RESULTS: In Study 1 NLRP3 and nucleotide oligomerization domain 1 (NOD1) gene expression was upregulated, and sputum IL-1ß protein levels were greater in obese versus nonobese asthmatic patients. In Study 2 the saturated fatty acid meal led to increases in sputum neutrophil percentages and sputum cell gene expression of Toll-like receptor 4 (TLR4) and NLRP3 at 4 hours in nonobese asthmatic patients. In Study 3 neutrophils and monocytes released IL-1ß when challenged with a combination of palmitic acid and LPS or TNF-α. CONCLUSION: The NLRP3 inflammasome is a potential therapeutic target in asthmatic patients. Behavioral interventions that reduce fatty acid exposure, such as weight loss and dietary saturated fat restriction, warrant further exploration.


Assuntos
Asma , Ácidos Graxos/administração & dosagem , Inflamassomos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Obesidade , Adulto , Idoso , Asma/dietoterapia , Asma/imunologia , Asma/patologia , Linhagem Celular , Estudos Transversais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Humanos , Interleucina-1beta/imunologia , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Proteína Adaptadora de Sinalização NOD1/imunologia , Obesidade/dietoterapia , Obesidade/imunologia , Obesidade/patologia , Escarro/imunologia , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/imunologia
17.
J Allergy Clin Immunol ; 144(1): 51-60.e11, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30682452

RESUMO

BACKGROUND: Improved diagnostic tools for predicting future exacerbation frequency in asthmatic patients are required. A sputum gene expression signature of 6 biomarkers (6-gene signature [6GS], including Charcot-Leyden crystal galectin [CLC]; carboxypeptidase 3 [CPA3]; deoxyribonuclease 1-like 3 [DNASE1L3]; alkaline phosphatase, liver/bone/kidney [ALPL]; CXCR2; and IL1B) predicts inflammatory and treatment response phenotypes in patients with stable asthma. Recently, we demonstrated that azithromycin (AZM) add-on treatment in patients with uncontrolled moderate-to-severe asthma significantly reduced asthma exacerbations (AMAZES clinical trial). OBJECTIVES: We sought to test whether the 6GS predicts future exacerbation and inflammatory phenotypes in a subpopulation of AMAZES and to test the effect of AZM therapy on 6GS expression and prognostic capacity. METHODS: One hundred forty-two patients (73 placebo-treated and 69 AZM-treated patients) had sputum stored for quantitative PCR of 6GS markers at baseline and after 48 weeks of treatment. Logistic regression and receiver operating characteristic and area under the curve (AUC) determination were performed on baseline measures, and in an exploratory analysis the predictive value of the 6GS was compared with conventional biomarkers for exacerbation and inflammatory phenotypes. RESULTS: The 6GS significantly predicted all future exacerbation phenotypes tested. Calculated AUCs for the 6GS were significantly greater than AUCs for peripheral blood eosinophil counts, sputum neutrophil counts, and combined sputum eosinophil and neutrophil counts. 6GS AUCs were also numerically but not significantly greater than those for fractional exhaled nitric oxide values and sputum eosinophil counts. AZM treatment altered neither 6GS expression nor the predictive capacity of the 6GS for future exacerbation phenotypes. The 6GS was a significant predictor of airway inflammatory phenotype in this population. CONCLUSION: We demonstrate that a sputum gene signature can predict future exacerbation phenotypes of asthma, with the greatest biomarker performance in identifying those who would experience frequent severe exacerbations. AZM therapy did not modify 6GS expression or biomarker performance, suggesting the therapeutic action of AZM is independent of 6GS-related inflammatory pathways.


Assuntos
Asma/genética , Índice de Gravidade de Doença , Escarro , Transcriptoma , Idoso , Antibacterianos/uso terapêutico , Asma/tratamento farmacológico , Asma/imunologia , Azitromicina/uso terapêutico , Método Duplo-Cego , Eosinófilos/imunologia , Feminino , Humanos , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Neutrófilos/imunologia , Fenótipo , Escarro/imunologia
18.
Clin Exp Allergy ; 49(11): 1418-1428, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31264263

RESUMO

BACKGROUND: Dysfunction of the bronchial epithelium plays an important role in asthma; however, its measurement is challenging. Columnar epithelial cells are often quantified, yet rarely analysed, in induced sputum studies. OBJECTIVE: We aimed to test whether sputum columnar epithelial cell proportion and count are altered in asthma, and whether they are associated with clinical and inflammatory variables. We aimed to test whether sputum-based measures could provide a relatively non-invasive means through which to monitor airway epithelial activation status. METHODS: We examined the relationship of sputum columnar epithelial cells with clinical and inflammatory variables of asthma in a large retrospective cross-sectional cohort (901 participants with asthma and 138 healthy controls). In further studies, we used flow cytometry, microarray, qPCR and ELISA to characterize sputum columnar epithelial cells and their products. RESULTS: Multivariate analysis and generation of 90th centile cut-offs (≥11% or ≥18.1 × 104 /mL) to identify columnar epithelial cell "high" asthma revealed a significant relationship between elevated sputum columnar cells and male gender, severe asthma and non-neutrophilic airway inflammation. Flow cytometry showed viable columnar epithelial cells were present in all sputum samples tested. An epithelial gene signature (SCGB3A1, LDLRAD1, FOXJ1, DNALI1, CFAP157, CFAP53) was detected in columnar epithelial cell-high sputum. CLCA1 mRNA and periostin protein, previously identified biomarkers of IL-13-mediated epithelial activation, were elevated in columnar epithelial cell-high sputum samples, but only when accompanied by eosinophilia. CONCLUSIONS & CLINICAL RELEVANCE: Sputum columnar epithelial cells are related to important clinical and inflammatory variables in asthma. Measurement of epithelial biomarkers in sputum samples could allow non-invasive assessment of altered bronchial epithelium status in asthma.


Assuntos
Antígenos de Diferenciação/metabolismo , Asma , Células Epiteliais , Escarro/metabolismo , Adulto , Idoso , Asma/metabolismo , Asma/patologia , Austrália , Biomarcadores/metabolismo , Estudos Transversais , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
19.
Respir Res ; 20(1): 1, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606211

RESUMO

BACKGROUND: Galectin-3 is a 32 kDa protein secreted by macrophages involved in processes such as cell activation, chemotaxis and phagocytosis. Galectin-3 has previously been shown to improve the ability of airway macrophages to ingest apoptotic cells (efferocytosis) in chronic obstructive pulmonary disease (COPD) and may be of interest in non-eosinophilic asthma (NEA) which is also characterised by impaired efferocytosis. It was hypothesised that the addition of exogenous galectin-3 to monocyte-derived macrophages (MDMs) derived from donors with NEA would enhance their ability to engulf apoptotic granulocytes. METHODS: Eligible non-smoking adults with asthma (n = 19), including 7 with NEA and healthy controls (n = 10) underwent a clinical assessment, venepuncture and sputum induction. MDMs were co-cultured with apoptotic granulocytes isolated from healthy donors with or without exogenous recombinant galectin-3 (50 µg/mL) and efferocytosis was assessed by flow cytometry. Galectin-3 expression and localisation in MDMs was visualised by immunofluorescence staining and fluorescence microscopy. Galectin-3, interleukin (IL)-6 and CXCL8 secretion were measured in cell culture supernatants by ELISA and cytometric bead array. RESULTS: Baseline efferocytosis (mean (±standard deviation)) was lower in participants with asthma (33.2 (±17.7)%) compared with healthy controls (45.3 (±15.9)%; p = 0.081). Efferocytosis did not differ between the participants with eosinophilic asthma (EA) (31.4 (±19.2)%) and NEA (28.7 (±21.5)%; p = 0.748). Addition of galectin-3 significantly improved efferocytosis in asthma, particularly in NEA (37.8 (±18.1)%) compared with baseline (30.4 (±19.7)%; p = 0.012). Efferocytosis was not associated with any of the clinical outcomes but was negatively correlated with sputum macrophage numbers (Spearman r = - 0.671; p = 0.017). Galectin-3 was diffusely distributed in most MDMs but formed punctate structures in 5% of MDMs. MDM galectin-3 secretion was lower in asthma (9.99 (2.67, 15.48) ng/mL) compared with the healthy controls (20.72 (11.28, 27.89) ng/mL; p = 0.044) while IL-6 and CXCL8 levels were similar. CONCLUSIONS: Galectin-3 modulates macrophage function in asthma, indicating a potential role for galectin-3 to reverse impaired efferocytosis in NEA.


Assuntos
Apoptose/fisiologia , Asma/metabolismo , Galectina 3/biossíntese , Granulócitos/metabolismo , Macrófagos/metabolismo , Fagocitose/fisiologia , Adulto , Idoso , Apoptose/efeitos dos fármacos , Proteínas Sanguíneas , Células Cultivadas , Feminino , Galectina 3/farmacologia , Galectinas , Granulócitos/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Fagocitose/efeitos dos fármacos
20.
J Immunol ; 196(9): 3547-58, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27036916

RESUMO

Viral respiratory infections trigger severe exacerbations of asthma, worsen disease symptoms, and impair lung function. To investigate the mechanisms underlying viral exacerbation, we established a mouse model of respiratory syncytial virus (RSV)-induced exacerbation after allergen sensitization and challenge. RSV infection of OVA-sensitized/challenged BALB/c mice resulted in significantly increased airway hyperresponsiveness (AHR) and macrophage and neutrophil lung infiltration. Exacerbation was accompanied by increased levels of inflammatory cytokines (including TNF-α, MCP-1, and keratinocyte-derived protein chemokine [KC]) compared with uninfected OVA-treated mice or OVA-treated mice exposed to UV-inactivated RSV. Dexamethasone treatment completely inhibited all features of allergic disease, including AHR and eosinophil infiltration, in uninfected OVA-sensitized/challenged mice. Conversely, dexamethasone treatment following RSV-induced exacerbation only partially suppressed AHR and failed to dampen macrophage and neutrophil infiltration or inflammatory cytokine production (TNF-α, MCP-1, and KC). This mimics clinical observations in patients with exacerbations, which is associated with increased neutrophils and often poorly responds to corticosteroid therapy. Interestingly, we also observed increased TNF-α levels in sputum samples from patients with neutrophilic asthma. Although RSV-induced exacerbation was resistant to steroid treatment, inhibition of TNF-α and MCP-1 function or depletion of macrophages suppressed features of disease, including AHR and macrophage and neutrophil infiltration. Our findings highlight critical roles for macrophages and inflammatory cytokines (including TNF-α and MCP-1) in viral-induced exacerbation of asthma and suggest examination of these pathways as novel therapeutic approaches for disease management.


Assuntos
Pulmão/imunologia , Macrófagos/imunologia , Hipersensibilidade Respiratória/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Fator de Necrose Tumoral alfa/imunologia , Alérgenos/imunologia , Animais , Asma/imunologia , Quimiocina CCL2/análise , Quimiocina CCL2/metabolismo , Citocinas/biossíntese , Citocinas/imunologia , Dexametasona/uso terapêutico , Modelos Animais de Doenças , Progressão da Doença , Humanos , Inflamação , Pulmão/fisiopatologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/imunologia , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Hipersensibilidade Respiratória/fisiopatologia , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/fisiopatologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/fisiologia , Vírus Sincicial Respiratório Humano/efeitos da radiação , Saliva/imunologia , Fator de Necrose Tumoral alfa/análise , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA