Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 236(5): 1976-1987, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36093739

RESUMO

Vast population movements induced by recurrent climatic cycles have shaped the genetic structure of plant species. During glacial periods species were confined to low-latitude refugia from which they recolonized higher latitudes as the climate improved. This multipronged recolonization led to many lineages that later met and formed large contact zones. We utilize genomic data from 5000 Picea abies trees to test for the presence of natural selection during recolonization and establishment of a contact zone in Scandinavia. Scandinavian P. abies is today made up of a southern genetic cluster originating from the Baltics, and a northern one originating from Northern Russia. The contact zone delineating them closely matches the limit between two major climatic regions. We show that natural selection contributed to its establishment and maintenance. First, an isolation-with-migration model with genome-wide linked selection fits the data better than a purely neutral one. Second, many loci show signatures of selection or are associated with environmental variables. These loci, regrouped in clusters on chromosomes, are often related to phenology. Altogether, our results illustrate how climatic cycles, recolonization and selection can establish strong local adaptation along contact zones and affect the genetic architecture of adaptive traits.


Assuntos
Abies , Seleção Genética , Árvores , Fenótipo , Demografia , Variação Genética
2.
Plant J ; 100(1): 83-100, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31166032

RESUMO

Norway spruce is a boreal forest tree species of significant ecological and economic importance. Hence there is a strong imperative to dissect the genetics underlying important wood quality traits in the species. We performed a functional genome-wide association study (GWAS) of 17 wood traits in Norway spruce using 178 101 single nucleotide polymorphisms (SNPs) generated from exome genotyping of 517 mother trees. The wood traits were defined using functional modelling of wood properties across annual growth rings. We applied a Least Absolute Shrinkage and Selection Operator (LASSO-based) association mapping method using a functional multilocus mapping approach that utilizes latent traits, with a stability selection probability method as the hypothesis testing approach to determine a significant quantitative trait locus. The analysis provided 52 significant SNPs from 39 candidate genes, including genes previously implicated in wood formation and tree growth in spruce and other species. Our study represents a multilocus GWAS for complex wood traits in Norway spruce. The results advance our understanding of the genetics influencing wood traits and identifies candidate genes for future functional studies.


Assuntos
Genes de Plantas/genética , Estudo de Associação Genômica Ampla/métodos , Picea/genética , Locos de Características Quantitativas/genética , Madeira/genética , Algoritmos , Genômica/métodos , Genótipo , Desequilíbrio de Ligação , Noruega , Fenótipo , Picea/classificação , Polimorfismo de Nucleotídeo Único , Madeira/classificação
3.
BMC Genomics ; 21(1): 796, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33198692

RESUMO

BACKGROUND: Genomic selection (GS) or genomic prediction is a promising approach for tree breeding to obtain higher genetic gains by shortening time of progeny testing in breeding programs. As proof-of-concept for Scots pine (Pinus sylvestris L.), a genomic prediction study was conducted with 694 individuals representing 183 full-sib families that were genotyped with genotyping-by-sequencing (GBS) and phenotyped for growth and wood quality traits. 8719 SNPs were used to compare different genomic with pedigree prediction models. Additionally, four prediction efficiency methods were used to evaluate the impact of genomic breeding value estimations by assigning diverse ratios of training and validation sets, as well as several subsets of SNP markers. RESULTS: Genomic Best Linear Unbiased Prediction (GBLUP) and Bayesian Ridge Regression (BRR) combined with expectation maximization (EM) imputation algorithm showed slightly higher prediction efficiencies than Pedigree Best Linear Unbiased Prediction (PBLUP) and Bayesian LASSO, with some exceptions. A subset of approximately 6000 SNP markers, was enough to provide similar prediction efficiencies as the full set of 8719 markers. Additionally, prediction efficiencies of genomic models were enough to achieve a higher selection response, that varied between 50-143% higher than the traditional pedigree-based selection. CONCLUSIONS: Although prediction efficiencies were similar for genomic and pedigree models, the relative selection response was doubled for genomic models by assuming that earlier selections can be done at the seedling stage, reducing the progeny testing time, thus shortening the breeding cycle length roughly by 50%.


Assuntos
Pinus sylvestris , Madeira , Teorema de Bayes , Genômica , Modelos Genéticos , Linhagem , Fenótipo , Pinus sylvestris/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Madeira/genética
4.
Mol Ecol ; 29(1): 199-213, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31755612

RESUMO

The taxonomically diverse phyllosphere fungi inhabit leaves of plants. Thus, apart from the fungi's dispersal capacities and environmental factors, the assembly of the phyllosphere community associated with a given host plant depends on factors encoded by the host's genome. The host genetic factors and their influence on the assembly of phyllosphere communities under natural conditions are poorly understood, especially in trees. Recent work indicates that Norway spruce (Picea abies) vegetative buds harbour active fungal communities, but these are hitherto largely uncharacterized. This study combines internal transcribed spacer sequencing of the fungal communities associated with dormant vegetative buds with a genome-wide association study (GWAS) in 478 unrelated Norway spruce trees. The aim was to detect host loci associated with variation in the fungal communities across the population, and to identify loci correlating with the presence of specific, latent, pathogens. The fungal communities were dominated by known Norway spruce phyllosphere endophytes and pathogens. We identified six quantitative trait loci (QTLs) associated with the relative abundance of the dominating taxa (i.e., top 1% most abundant taxa). Three additional QTLs associated with colonization by the spruce needle cast pathogen Lirula macrospora or the cherry spruce rust (Thekopsora areolata) in asymptomatic tissues were detected. The identification of the nine QTLs shows that the genetic variation in Norway spruce influences the fungal community in dormant buds and that mechanisms underlying the assembly of the communities and the colonization of latent pathogens in trees may be uncovered by combining molecular identification of fungi with GWAS.


Assuntos
Ascomicetos/genética , Basidiomycota/genética , Estudo de Associação Genômica Ampla , Micobioma , Picea/genética , Locos de Características Quantitativas/genética , Ecologia , Endófitos , Genótipo , Noruega , Fenótipo , Picea/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Árvores/microbiologia
5.
Plant Cell Environ ; 43(7): 1779-1791, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32276288

RESUMO

It is important to improve the understanding of the interactions between the trees and pathogens and integrate this knowledge about disease resistance into tree breeding programs. The conifer Norway spruce (Picea abies) is an important species for the forest industry in Europe. Its major pathogen is Heterobasidion parviporum, causing stem and root rot. In this study, we identified 11 Norway spruce QTLs (Quantitative trait loci) that correlate with variation in resistance to H. parviporum in a population of 466 trees by association genetics. Individual QTLs explained between 2.1 and 5.2% of the phenotypic variance. The expression of candidate genes associated with the QTLs was analysed in silico and in response to H. parviporum hypothesizing that (a) candidate genes linked to control of fungal sapwood growth are more commonly expressed in sapwood, and; (b) candidate genes associated with induced defences are respond to H. parviporum inoculation. The Norway spruce laccase PaLAC5 associated with control of lesion length development is likely to be involved in the induced defences. Expression analyses showed that PaLAC5 responds specifically and strongly in close proximity to the H. parviporum inoculation. Thus, PaLAC5 may be associated with the lignosuberized boundary zone formation in bark adjacent to the inoculation site.


Assuntos
Basidiomycota , Resistência à Doença/genética , Genes de Plantas/genética , Picea/genética , Doenças das Plantas/imunologia , Regulação da Expressão Gênica de Plantas/genética , Estudos de Associação Genética , Técnicas de Genotipagem , Picea/imunologia , Picea/microbiologia , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Reação em Cadeia da Polimerase em Tempo Real
6.
J Hered ; 110(7): 830-843, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31629368

RESUMO

A genomic selection study of growth and wood quality traits is reported based on control-pollinated Norway spruce families established in 2 Northern Swedish trials at 2 locations using exome capture as a genotyping platform. Nonadditive effects including dominance and first-order epistatic interactions (including additive-by-additive, dominance-by-dominance, and additive-by-dominance) and marker-by-environment interaction (M×E) effects were dissected in genomic and phenotypic selection models. Genomic selection models partitioned additive and nonadditive genetic variances more precisely than pedigree-based models. In addition, predictive ability in GS was substantially increased by including dominance and slightly increased by including M×E effects when these effects are significant. For velocity, response to genomic selection per year increased up to 78.9/80.8%, 86.9/82.9%, and 91.3/88.2% compared with response to phenotypic selection per year when genomic selection was based on 1) main marker effects (M), 2) M + M×E effects (A), and 3) A + dominance effects (AD) for sites 1 and 2, respectively. This indicates that including M×E and dominance effects not only improves genetic parameter estimates but also when they are significant may improve the genetic gain. For tree height, Pilodyn, and modulus of elasticity (MOE), response to genomic selection per year improved up to 68.9%, 91.3%, and 92.6% compared with response to phenotypic selection per year, respectively.Subject Area: Quantitative genetics and Mendelian inheritance.


Assuntos
Interação Gene-Ambiente , Marcadores Genéticos , Modelos Genéticos , Picea/genética , Característica Quantitativa Herdável , Seleção Genética , Algoritmos , Variação Genética , Genótipo , Fenótipo , Reprodutibilidade dos Testes
7.
BMC Genomics ; 19(1): 946, 2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30563448

RESUMO

BACKGROUND: Genomic selection (GS) can increase genetic gain by reducing the length of breeding cycle in forest trees. Here we genotyped 1370 control-pollinated progeny trees from 128 full-sib families in Norway spruce (Picea abies (L.) Karst.), using exome capture as genotyping platform. We used 116,765 high-quality SNPs to develop genomic prediction models for tree height and wood quality traits. We assessed the impact of different genomic prediction methods, genotype-by-environment interaction (G × E), genetic composition, size of the training and validation set, relatedness, and number of SNPs on accuracy and predictive ability (PA) of GS. RESULTS: Using G matrix slightly altered heritability estimates relative to pedigree-based method. GS accuracies were about 11-14% lower than those based on pedigree-based selection. The efficiency of GS per year varied from 1.71 to 1.78, compared to that of the pedigree-based model if breeding cycle length was halved using GS. Height GS accuracy decreased to more than 30% while using one site as training for GS prediction and using this model to predict the second site, indicating that G × E for tree height should be accommodated in model fitting. Using a half-sib family structure instead of full-sib structure led to a significant reduction in GS accuracy and PA. The full-sib family structure needed only 750 markers to reach similar accuracy and PA, as compared to 100,000 markers required for the half-sib family, indicating that maintaining the high relatedness in the model improves accuracy and PA. Using 4000-8000 markers in full-sib family structure was sufficient to obtain GS model accuracy and PA for tree height and wood quality traits, almost equivalent to that obtained with all markers. CONCLUSIONS: The study indicates that GS would be efficient in reducing generation time of breeding cycle in conifer tree breeding program that requires long-term progeny testing. The sufficient number of trees within-family (16 for growth and 12 for wood quality traits) and number of SNPs (8000) are required for GS with full-sib family relationship. GS methods had little impact on GS efficiency for growth and wood quality traits. GS model should incorporate G × E effect when a strong G × E is detected.


Assuntos
Exoma , Picea/crescimento & desenvolvimento , Picea/genética , Polinização , Seleção Genética , Madeira/química , Marcadores Genéticos , Genômica/métodos , Genótipo , Modelos Genéticos , Modelos Estatísticos , Noruega , Fenótipo , Melhoramento Vegetal , Madeira/genética
8.
G3 (Bethesda) ; 9(5): 1623-1632, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30898899

RESUMO

Norway spruce (Picea abies (L.) Karst.) is a conifer species of substanital economic and ecological importance. In common with most conifers, the P. abies genome is very large (∼20 Gbp) and contains a high fraction of repetitive DNA. The current P. abies genome assembly (v1.0) covers approximately 60% of the total genome size but is highly fragmented, consisting of >10 million scaffolds. The genome annotation contains 66,632 gene models that are at least partially validated (www.congenie.org), however, the fragmented nature of the assembly means that there is currently little information available on how these genes are physically distributed over the 12 P. abies chromosomes. By creating an ultra-dense genetic linkage map, we anchored and ordered scaffolds into linkage groups, which complements the fine-scale information available in assembly contigs. Our ultra-dense haploid consensus genetic map consists of 21,056 markers derived from 14,336 scaffolds that contain 17,079 gene models (25.6% of the validated gene models) that we have anchored to the 12 linkage groups. We used data from three independent component maps, as well as comparisons with previously published Picea maps to evaluate the accuracy and marker ordering of the linkage groups. We demonstrate that approximately 3.8% of the anchored scaffolds and 1.6% of the gene models covered by the consensus map have likely assembly errors as they contain genetic markers that map to different regions within or between linkage groups. We further evaluate the utility of the genetic map for the conifer research community by using an independent data set of unrelated individuals to assess genome-wide variation in genetic diversity using the genomic regions anchored to linkage groups. The results show that our map is sufficiently dense to enable detailed evolutionary analyses across the P. abies genome.


Assuntos
Mapeamento Cromossômico , Genoma de Planta , Genômica , Haploidia , Picea/genética , Ligação Genética , Marcadores Genéticos , Genética Populacional , Genômica/métodos , Noruega , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA