RESUMO
Des-(N-methyl-D-leucyl)eremomycin was obtained by Edman degradation of eremomycin. Derivatives with a hydrophobic substituent at the exterior of the molecule were then synthesized, and their antibacterial activities were compared with similar derivatives of eremomycin. Comparison of derivatives of eremomycin containing the n-decyl or p-(p-chlorophenyl)benzyl substituent in the eremosamine moiety (N') and n-decyl or p-(p-chlorophenyl)benzylamides with similar derivatives of eremomycin possessing the damaged peptide core (a defective binding pocket) showed that compounds of both types are almost equally active against glycopeptide-resistant strains of enterococci (GRE), whereas eremomycin derivatives are more active against staphylococci. Hydrophobic 7d-alkylaminomethylated derivatives of eremomycin (9, 10) demonstrated similar antibacterial properties. Since the basic mode of action of glycopeptide antibiotics involves binding to cell wall intermediates terminating in -D-Ala-D-Ala and this interaction is seriously decreased in the hexapeptide derivatives (lacking the critical N-methyl-D-leucine), we suggest that these hydrophobic derivatives may inhibit peptidoglycan synthesis in the absence of dipeptide binding. NMR binding experiments using Ac-D-Ala-D-Ala show that binding constants of these hexapeptide derivativies are decreased in comparison with the corresponding heptapeptides with intact binding pocket. This is in agreement with the decreased biological activity of the hexapeptide derivatives against vancomycin-sensitive strains in comparison with the activity of parent compounds. Binding to the lactate cell wall analogue Ac-D-Ala-D-Lac with decylamide of eremomycin 8 was not observed, demonstrating that the interaction with this target in GRE does not occur. While hydrophobic glycopeptide derivatives retain the ability to inhibit the synthesis of peptidoglycan in manner of natural glycopeptides, biochemical investigation supports the hypothesis that they inhibit the transglycosylase stage of bacterial peptidoglycan biosynthesis even in the absence of dipeptide or depsipeptide binding.
Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Glicopeptídeos/síntese química , Glicopeptídeos/farmacologia , Antibacterianos/química , Enterococcus/efeitos dos fármacos , Humanos , Ligantes , Testes de Sensibilidade Microbiana , Ressonância Magnética Nuclear Biomolecular , Peptidoglicano/biossíntese , Staphylococcus aureus/efeitos dos fármacos , Propriedades de SuperfícieRESUMO
Moenomycin is a natural product glycolipid that inhibits the growth of a broad spectrum of Gram-positive bacteria. In Escherichia coli, moenomycin inhibits peptidoglycan synthesis at the transglycosylation stage, causes accumulation of cell-wall intermediates, and leads to lysis and cell death. However, unlike Esc. coli, where 5-6 log units of killing are observed, 0-2 log units of killing occurred when Gram-positive bacteria were treated with similar multiples of the MIC. In addition, bulk peptidoglycan synthesis in intact Gram-positive cells was resistant to the effects of moenomycin. In contrast, synthetic disaccharides based on the moenomycin disaccharide core structure were identified that were bactericidal to Gram-positive bacteria, inhibited cell-wall synthesis in intact cells, and were active on both sensitive and vancomycin-resistant enterococci. These disaccharide analogues do not inhibit the formation of N:-acetylglucosamine-ss-1, 4-MurNAc-pentapeptide-pyrophosphoryl-undecaprenol (lipid II), but do inhibit the polymerization of lipid II into peptidoglycan in Esc. coli. In addition, cell growth was required for bactericidal activity. The data indicate that synthetic disaccharide analogues of moenomycin inhibit cell-wall synthesis at the transglycosylation stage, and that their activity on Gram-positive bacteria differs from moenomycin due to differential targeting of the transglycosylation process. Inhibition of the transglycosylation process represents a promising approach to the design of new antibacterial agents active on drug-resistant bacteria.