RESUMO
For patients with heart failure, myocardial ATP level can be reduced to one-half of that observed in healthy controls. This marked reduction (from ≈8 mM in healthy controls to as low as 3-4 mM in heart failure) has been suggested to contribute to impaired myocardial contraction and to the decreased pump function characteristic of heart failure. However, in vitro measures of maximum myofilament force generation, maximum shortening velocity, and the actomyosin ATPase activity show effective KM values for MgATP ranging from ≈10 µM to 150 µM, well below the intracellular ATP level in heart failure. Thus, it is not clear that the fall of myocardial ATP observed in heart failure is sufficient to impair the function of the contractile proteins. Therefore, we tested the effect of low MgATP levels on myocardial contraction using demembranated cardiac muscle preparations that were exposed to MgATP levels typical of the range found in non-failing and failing hearts. Consistent with previous studies, we found that a 50% reduction in MgATP level (from 8 mM to 4 mM) did not reduce maximum force generation or maximum velocity of shortening. However, we found that a 50% reduction in MgATP level caused a 20%-25% reduction in maximal power generation (measured during muscle shortening against a load) and a 20% slowing of cross-bridge cycling kinetics. These results suggest that the decreased cellular ATP level occurring in heart failure contributes to the impaired pump function of the failing heart. Since the ATP-myosin ATPase dissociation constant is estimated to be submillimolar, these findings also suggest that MgATP concentration affects cross-bridge dynamics through a mechanism that is more complex than through the direct dependence of MgATP concentration on myosin ATPase activity. Finally, these studies suggest that therapies targeted to increase adenine nucleotide pool levels in cardiomyocytes might be beneficial for treating heart failure.
Assuntos
Insuficiência Cardíaca , Miocárdio , Trifosfato de Adenosina/metabolismo , Coração , Humanos , Contração Muscular , Contração Miocárdica , Miocárdio/metabolismo , MiosinasRESUMO
RATIONALE: Gq signaling in cardiac myocytes is classically considered toxic. Targeting Gq directly to test this is problematic, because cardiac myocytes have many Gq-coupled receptors. OBJECTIVE: Test whether Gq coupling is required for the cardioprotective effects of an alpha-1A-AR (adrenergic receptor) agonist. METHODS AND RESULTS: In recombinant cells, a mouse alpha-1A-AR with a 6-residue substitution in the third intracellular loop does not couple to Gq signaling. Here we studied a knockin mouse with this alpha-1A-AR mutation. Heart alpha-1A receptor levels and antagonist affinity in the knockin were identical to wild-type. In wild-type cardiac myocytes, the selective alpha-1A agonist A61603-stimulated phosphoinositide-phospholipase C and myocyte contraction. In myocytes with the alpha-1A knockin, both A61603 effects were absent, indicating that Gq coupling was absent. Surprisingly, A61603 activation of cardioprotective ERK (extracellular signal-regulated kinase) was markedly impaired in the KI mutant myocytes, and A61603 did not protect mutant myocytes from doxorubicin toxicity in vitro. Similarly, mice with the α1A KI mutation had increased mortality after transverse aortic constriction, and A61603 did not rescue cardiac function in mice with the Gq coupling-defective alpha-1A receptor. CONCLUSIONS: Gq coupling is required for cardioprotection by an alpha-1A-AR agonist. Gq signaling can be adaptive.
Assuntos
Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Cardiotônicos/farmacologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Imidazóis/farmacologia , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Tetra-Hidronaftalenos/farmacologia , Substituição de Aminoácidos , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Fosfoinositídeo Fosfolipase C/metabolismo , Domínios Proteicos , Receptores Adrenérgicos alfa 1/química , Receptores Adrenérgicos alfa 1/genética , Transdução de SinaisRESUMO
Right ventricular (RV) failure (RVF) is a serious disease with no effective treatment available. We recently reported a disease prevention study showing that chronic stimulation of α1A-adrenergic receptors (α1A-ARs), started at the time of RV injury, prevented the development of RVF. The present study used a clinically relevant disease reversal design to test if chronic α1A-AR stimulation, started after RVF was established, could reverse RVF. RVF was induced surgically by pulmonary artery constriction in mice. Two weeks after pulmonary artery constriction, in vivo RV fractional shortening as assessed by MRI was reduced by half relative to sham-operated controls (25 ± 2%, n = 27, vs. 52 ± 2%, n = 13, P < 10-11). Subsequent chronic treatment with the α1A-AR agonist A61603 for a further 2 wk resulted in a substantial recovery of RV fractional shortening (to 41 ± 2%, n = 17, P < 10-7 by a paired t-test) along with recovery of voluntary exercise capacity. Mechanistically, chronic A61603 treatment resulted in increased activation of the prosurvival kinase ERK, increased abundance of the antiapoptosis factor Bcl-2, and decreased myocyte necrosis evidenced by a decreased serum level of cardiac troponin. Moreover, A61603 treatment caused increased abundance of the antioxidant glutathione peroxidase-1, decreased level of reactive oxygen species, and decreased oxidative modification (carbonylation) of myofilament proteins. Consistent with these effects, A61603 treatment resulted in increased force development by cardiac myofilaments, which might have contributed to increased RV function. These findings suggest that the α1A-AR is a therapeutic target to reverse established RVF. NEW & NOTEWORTHY Currently, there are no effective therapies for right ventricular (RV) failure (RVF). This project evaluated a novel therapy for RVF. In a mouse model of RVF, chronic stimulation of α1A-adrenergic receptors with the agonist A61603 resulted in recovery of in vivo RV function, improved exercise capacity, reduced oxidative stress-related carbonylation of contractile proteins, and increased myofilament force generation. These results suggest that the α1A-adrenergic receptor is a therapeutic target to treat RVF.
Assuntos
Agonistas de Receptores Adrenérgicos alfa 1/uso terapêutico , Antioxidantes/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Imidazóis/uso terapêutico , Tetra-Hidronaftalenos/uso terapêutico , Disfunção Ventricular Direita/tratamento farmacológico , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Antioxidantes/farmacologia , Glutationa Peroxidase/metabolismo , Imidazóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Estresse Oxidativo , Carbonilação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Tetra-Hidronaftalenos/farmacologia , Troponina I/metabolismoRESUMO
RATIONALE: It is unknown whether every ventricular myocyte expresses all 5 of the cardiac adrenergic receptors (ARs), ß1, ß2, ß3, α1A, and α1B. The ß1 and ß2 are thought to be the dominant myocyte ARs. OBJECTIVE: Quantify the 5 cardiac ARs in individual ventricular myocytes. METHODS AND RESULTS: We studied ventricular myocytes from wild-type mice, mice with α1A and α1B knockin reporters, and ß1 and ß2 knockout mice. Using individual isolated cells, we measured knockin reporters, mRNAs, signaling (phosphorylation of extracellular signal-regulated kinase and phospholamban), and contraction. We found that the ß1 and α1B were present in all myocytes. The α1A was present in 60%, with high levels in 20%. The ß2 and ß3 were detected in only ≈5% of myocytes, mostly in different cells. In intact heart, 30% of total ß-ARs were ß2 and 20% were ß3, both mainly in nonmyocytes. CONCLUSION: The dominant ventricular myocyte ARs present in all cells are the ß1 and α1B. The ß2 and ß3 are mostly absent in myocytes but are abundant in nonmyocytes. The α1A is in just over half of cells, but only 20% have high levels. Four distinct myocyte AR phenotypes are defined: 30% of cells with ß1 and α1B only; 60% that also have the α1A; and 5% each that also have the ß2 or ß3. The results raise cautions in experimental design, such as receptor overexpression in myocytes that do not express the AR normally. The data suggest new paradigms in cardiac adrenergic signaling mechanisms.
Assuntos
Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos alfa/metabolismo , Receptores Adrenérgicos beta/metabolismo , Animais , Células Cultivadas , Ventrículos do Coração/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Adrenérgicos alfa/genética , Receptores Adrenérgicos beta/genética , Análise de Célula ÚnicaAssuntos
Sinalização do Cálcio , Acoplamento Excitação-Contração , Miócitos Cardíacos/metabolismo , Estresse Mecânico , Potenciais de Ação , Animais , Células Cultivadas , Ventrículos do Coração/citologia , Hidrogéis/química , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp/métodos , CoelhosRESUMO
Recent studies report that a single subtype of α1-adrenergic receptor (α1-AR), the α1A-subtype, mediates robust cardioprotective effects in multiple experimental models of heart failure, suggesting that the α1A-subtype is a potential therapeutic target for an agonist to treat heart failure. Moreover, we recently found that the α1A-subtype is present in human heart. The goal of this study was to assess the inotropic response mediated by the α1A-subtype in human myocardium, and to determine whether the response is downregulated in myocardium from failing human heart. We measured in vitro contractile responses of cardiac muscle preparations (trabeculae) isolated from the right ventricle from nonfailing and failing human hearts. Addition of the α1A-subtype agonist A61603 (100 nM) resulted in a large positive inotropic response (force increased ≈ 2-fold). This response represented ≈70% of the response mediated by the ß-adrenergic receptor agonist isoproterenol (1 µM). Moreover, in myocardium from failing hearts, α1A-subtype responses remained robust, and only slightly reduced relative to nonfailing hearts. We conclude that α1A-subtype-mediated inotropy could represent a significant source of inotropic support in the human heart. Furthermore, the α1A-subtype remains functional in myocardium from failing human hearts and thus, might be a therapeutic target to support cardioprotective effects in patients with heart failure.
Assuntos
Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Cardiotônicos/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Imidazóis/farmacologia , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Receptores Adrenérgicos alfa 1/efeitos dos fármacos , Tetra-Hidronaftalenos/farmacologia , Função Ventricular Direita/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Técnicas In Vitro , Isoproterenol/farmacologia , Masculino , Pessoa de Meia-Idade , Receptores Adrenérgicos alfa 1/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Right ventricular (RV) failure, which occurs in the setting of pressure overload, is characterized by abnormalities in mechanical and energetic function. The effects of these cell- and tissue-level changes on organ-level RV function are unknown. The primary aim of this study was to investigate the effects of myofiber mechanics and mitochondrial energetics on organ-level RV function in the context of pressure overload using a multiscale model of the cardiovascular system. The model integrates the mitochondria-generated metabolite concentrations that drive intracellular actin-myosin cross-bridging and extracellular myocardial tissue mechanics in a biventricular heart model coupled with simple lumped parameter circulations. Three types of pressure overload were simulated and compared to experimental results. The computational model was able to capture a wide range of cardiovascular physiology and pathophysiology from mild RV dysfunction to RV failure. Our results confirm that, in response to pressure overload alone, the RV is able to maintain cardiac output (CO) and predict that alterations in either RV active myofiber mechanics or RV metabolite concentrations are necessary to decrease CO.
Assuntos
Ventrículos do Coração , Fenômenos Mecânicos , Modelos Cardiovasculares , Fenômenos Biomecânicos , Doenças Cardiovasculares/fisiopatologia , Função Ventricular EsquerdaRESUMO
Acute kidney injury (AKI) causes severe morbidity, mortality, and chronic kidney disease (CKD). Mortality is particularly marked in the elderly and with preexisting CKD. Oxidative stress is a common theme in models of AKI induced by ischemia-reperfusion (I-R) injury. We recently characterized an intracellular isoform of matrix metalloproteinase-2 (MMP-2) induced by oxidative stress-mediated activation of an alternate promoter in the first intron of the MMP-2 gene. This generates an NH2-terminal truncated MMP-2 (NTT-MMP-2) isoform that is intracellular and associated with mitochondria. The NTT-MMP-2 isoform is expressed in kidneys of 14-mo-old mice and in a mouse model of coronary atherosclerosis and heart failure with CKD. We recently determined that NTT-MMP-2 is induced in human renal transplants with delayed graft function and correlated with tubular cell necrosis. To determine mechanism(s) of action, we generated proximal tubule cell-specific NTT-MMP-2 transgenic mice. Although morphologically normal at the light microscopic level at 4 mo, ultrastructural studies revealed foci of tubular epithelial cell necrosis, the mitochondrial permeability transition, and mitophagy. To determine whether NTT-MMP-2 expression enhances sensitivity to I-R injury, we performed unilateral I-R to induce mild tubular injury in wild-type mice. In contrast, expression of the NTT-MMP-2 isoform resulted in a dramatic increase in tubular cell necrosis, inflammation, and fibrosis. NTT-MMP-2 mice had enhanced expression of innate immunity genes and release of danger-associated molecular pattern molecules. We conclude that NTT-MMP-2 "primes" the kidney to enhanced susceptibility to I-R injury via induction of mitochondrial dysfunction. NTT-MMP-2 may be a novel AKI treatment target.
Assuntos
Injúria Renal Aguda/enzimologia , Necrose Tubular Aguda/enzimologia , Túbulos Renais Proximais/enzimologia , Metaloproteinase 2 da Matriz/metabolismo , Traumatismo por Reperfusão/enzimologia , Injúria Renal Aguda/genética , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/patologia , Fatores Etários , Animais , Doença da Artéria Coronariana/enzimologia , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/patologia , Modelos Animais de Doenças , Predisposição Genética para Doença , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Humanos , Imunidade Inata , Isoenzimas , Necrose Tubular Aguda/genética , Necrose Tubular Aguda/imunologia , Necrose Tubular Aguda/patologia , Túbulos Renais Proximais/imunologia , Túbulos Renais Proximais/ultraestrutura , Metaloproteinase 2 da Matriz/genética , Potencial da Membrana Mitocondrial , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/enzimologia , Mitocôndrias/ultraestrutura , Mitofagia , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Necrose , Estresse Oxidativo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/patologia , Transdução de SinaisRESUMO
Failure of the right ventricle (RV) is a serious disease with a poor prognosis and limited treatment options. Signaling by α1-adrenergic receptors (α1-ARs), in particular the α1A-subtype, mediate cardioprotective effects in multiple heart failure models. Recent studies have shown that chronic treatment with the α1A-subtype agonist A61603 improves function and survival in a model of left ventricular failure. The goal of the present study was to determine if chronic A61603 treatment is beneficial in a RV failure model. We used tracheal instillation of the fibrogenic antibiotic bleomycin in mice to induce pulmonary fibrosis, pulmonary hypertension, and RV failure within 2 wk. Some mice were chronically treated with a low dose of A61603 (10 ng·kg-1·day-1). In the bleomycin model of RV failure, chronic A61603 treatment was associated with improved RV fractional shortening and greater in vitro force development by RV muscle preparations. Cell injury markers were reduced with A61603 treatment (serum cardiac troponin I, RV fibrosis, and expression of matrix metalloproteinase-2). RV oxidative stress was reduced (using the probes dihydroethidium and 4-hydroxynonenal). Consistent with lowered RV oxidative stress, A61603 was associated with an increased level of the cellular antioxidant superoxide dismutase 1 and a lower level of the prooxidant NAD(P)H oxidase isoform NOX4. In summary, in the bleomycin model of RV failure, chronic A61603 treatment reduced RV oxidative stress, RV myocyte necrosis, and RV fibrosis and increased both RV function and in vitro force development. These findings suggest that in the context of pulmonary fibrosis, the α1A-subtype is a potential therapeutic target to treat the failing RV.NEW & NOTEWORTHY Right ventricular (RV) failure is a serious disease with a poor prognosis and no effective treatments. In the mouse bleomycin model of RV failure, we tested the efficacy of a treatment using the α1A-adrenergic receptor subtype agonist A61603. Chronic A61603 treatment improved RV contraction and reduced multiple indexes of RV injury, suggesting that the α1A-subtype is a therapeutic target to treat RV failure.
Assuntos
Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Cardiotônicos/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Ventrículos do Coração/efeitos dos fármacos , Imidazóis/farmacologia , Contração Miocárdica/efeitos dos fármacos , Receptores Adrenérgicos alfa 1/efeitos dos fármacos , Tetra-Hidronaftalenos/farmacologia , Disfunção Ventricular Direita/prevenção & controle , Função Ventricular Direita/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Bleomicina , Modelos Animais de Doenças , Fibrose , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , NADPH Oxidase 4/metabolismo , Necrose , Estresse Oxidativo/efeitos dos fármacos , Fibrose Pulmonar/complicações , Receptores Adrenérgicos alfa 1/metabolismo , Recuperação de Função Fisiológica , Superóxido Dismutase-1/metabolismo , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/fisiopatologia , Remodelação Ventricular/efeitos dos fármacosRESUMO
Acute kidney injury (AKI) is a major risk factor for the development of chronic kidney disease (CKD). Persistent oxidative stress and mitochondrial dysfunction are implicated across diverse forms of AKI and in the transition to CKD. In this study, we applied hyperpolarized (HP) 13 C dehydroascorbate (DHA) and 13 C pyruvate magnetic resonance spectroscopy (MRS) to investigate the renal redox capacity and mitochondrial pyruvate dehydrogenase (PDH) activity, respectively, in a murine model of AKI at baseline and 7 days after unilateral ischemia reperfusion injury (IRI). Compared with the contralateral sham-operated kidneys, the kidneys subjected to IRI showed a significant decrease in the HP 13 C vitamin C/(vitamin C + DHA) ratio, consistent with a decrease in redox capacity. The kidneys subjected to IRI also showed a significant decrease in the HP 13 C bicarbonate/pyruvate ratio, consistent with impaired PDH activity. The IRI kidneys showed a significantly higher HP 13 C lactate/pyruvate ratio at day 7 compared with baseline, although the 13 C lactate/pyruvate ratio was not significantly different between the IRI and contralateral sham-operated kidneys at day 7. Arterial spin labeling magnetic resonance imaging (MRI) demonstrated significantly reduced perfusion in the IRI kidneys. Renal tissue analysis showed corresponding increased reactive oxygen species (ROS) and reduced PDH activity in the IRI kidneys. Our results show the feasibility of HP 13 C MRS for the non-invasive assessment of oxidative stress and mitochondrial PDH activity following renal IRI.
Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Rim/irrigação sanguínea , Rim/patologia , Traumatismo por Reperfusão/diagnóstico , Animais , Nitrogênio da Ureia Sanguínea , Peso Corporal , Ácido Desidroascórbico/metabolismo , Modelos Animais de Doenças , Rim/diagnóstico por imagem , L-Lactato Desidrogenase/metabolismo , Masculino , Camundongos , Tamanho do Órgão , Complexo Piruvato Desidrogenase/metabolismo , Ácido Pirúvico/metabolismo , Traumatismo por Reperfusão/patologiaRESUMO
Adrenergic receptors (AR) are G-protein-coupled receptors (GPCRs) that have a crucial role in cardiac physiology in health and disease. Alpha1-ARs signal through Gαq, and signaling through Gq, for example, by endothelin and angiotensin receptors, is thought to be detrimental to the heart. In contrast, cardiac alpha1-ARs mediate important protective and adaptive functions in the heart, although alpha1-ARs are only a minor fraction of total cardiac ARs. Cardiac alpha1-ARs activate pleiotropic downstream signaling to prevent pathologic remodeling in heart failure. Mechanisms defined in animal and cell models include activation of adaptive hypertrophy, prevention of cardiac myocyte death, augmentation of contractility, and induction of ischemic preconditioning. Surprisingly, at the molecular level, alpha1-ARs localize to and signal at the nucleus in cardiac myocytes, and, unlike most GPCRs, activate "inside-out" signaling to cause cardioprotection. Contrary to past opinion, human cardiac alpha1-AR expression is similar to that in the mouse, where alpha1-AR effects are seen most convincingly in knockout models. Human clinical studies show that alpha1-blockade worsens heart failure in hypertension and does not improve outcomes in heart failure, implying a cardioprotective role for human alpha1-ARs. In summary, these findings identify novel functional and mechanistic aspects of cardiac alpha1-AR function and suggest that activation of cardiac alpha1-AR might be a viable therapeutic strategy in heart failure.
Assuntos
Coração/fisiologia , Receptores Adrenérgicos alfa 1/fisiologia , Animais , Cardiopatias/fisiopatologia , Humanos , Miócitos Cardíacos/metabolismo , Transdução de SinaisRESUMO
In beating hearts, phosphorylation of myosin regulatory light chain (RLC) at a single site to 0.45 mol of phosphate/mol by cardiac myosin light chain kinase (cMLCK) increases Ca(2+) sensitivity of myofilament contraction necessary for normal cardiac performance. Reduction of RLC phosphorylation in conditional cMLCK knock-out mice caused cardiac dilation and loss of cardiac performance by 1 week, as shown by increased left ventricular internal diameter at end-diastole and decreased fractional shortening. Decreased RLC phosphorylation by conventional or conditional cMLCK gene ablation did not affect troponin-I or myosin-binding protein-C phosphorylation in vivo. The extent of RLC phosphorylation was not changed by prolonged infusion of dobutamine or treatment with a ß-adrenergic antagonist, suggesting that RLC is constitutively phosphorylated to maintain cardiac performance. Biochemical studies with myofilaments showed that RLC phosphorylation up to 90% was a random process. RLC is slowly dephosphorylated in both noncontracting hearts and isolated cardiac myocytes from adult mice. Electrically paced ventricular trabeculae restored RLC phosphorylation, which was increased to 0.91 mol of phosphate/mol of RLC with inhibition of myosin light chain phosphatase (MLCP). The two RLCs in each myosin appear to be readily available for phosphorylation by a soluble cMLCK, but MLCP activity limits the amount of constitutive RLC phosphorylation. MLCP with its regulatory subunit MYPT2 bound tightly to myofilaments was constitutively phosphorylated in beating hearts at a site that inhibits MLCP activity. Thus, the constitutive RLC phosphorylation is limited physiologically by low cMLCK activity in balance with low MLCP activity.
Assuntos
Miocárdio/metabolismo , Cadeias Leves de Miosina/metabolismo , Animais , Cálcio/metabolismo , Calmodulina/metabolismo , Ventrículos do Coração/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Cadeias Leves de Miosina/deficiência , Cadeias Leves de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosforilação , Ratos , Ratos Sprague-DawleyRESUMO
Dysfunction of the right ventricle (RV) is closely related to prognosis for patients with RV failure. Therefore, strategies to improve failing RV function are significant. In a mouse RV failure model, we previously reported that α1-adrenergic receptor (α1-AR) inotropic responses are increased. The present study determined the roles of both predominant cardiac α1-AR subtypes (α1A and α1B) in upregulated inotropy in failing RV. We used the mouse model of bleomycin-induced pulmonary fibrosis, pulmonary hypertension, and RV failure. We assessed the myocardial contractile response in vitro to stimulation of the α1A-subtype (using α1A-subtype-selective agonist A61603) and α1B-subtype [using α1A-subtype knockout mice and nonsubtype selective α1-AR agonist phenylephrine (PE)]. In wild-type nonfailing RV, a negative inotropic effect of α1-AR stimulation with PE (force decreased ≈50%) was switched to a positive inotropic effect (PIE) with bleomycin-induced RV injury. Upregulated inotropy in failing RV occurred with α1A-subtype stimulation (force increased ≈200%), but not with α1B-subtype stimulation (force decreased ≈50%). Upregulated inotropy mediated by the α1A-subtype involved increased activator Ca(2+) transients and increased phosphorylation of myosin regulatory light chain (a mediator of increased myofilament Ca(2+) sensitivity). In failing RV, the PIE elicited by the α1A-subtype was appreciably less when the α1A-subtype was stimulated in combination with the α1B-subtype, suggesting functional antagonism between α1A- and α1B-subtypes. In conclusion, upregulation of α1-AR inotropy in failing RV myocardium requires the α1A-subtype and is opposed by the α1B-subtype. The α1A subtype might be a therapeutic target to improve the function of the failing RV.
Assuntos
Insuficiência Cardíaca/metabolismo , Contração Miocárdica , Receptores Adrenérgicos alfa 1/metabolismo , Disfunção Ventricular Direita/metabolismo , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Sinalização do Cálcio , Células Cultivadas , Insuficiência Cardíaca/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Miosinas/metabolismo , Receptores Adrenérgicos alfa 1/classificação , Receptores Adrenérgicos alfa 1/genética , Disfunção Ventricular Direita/fisiopatologiaRESUMO
Heart failure with reduced ejection fraction involves activation of the sympathetic nervous system and chronic hyperactivation of the sympatho-adrenergic receptors (ARs) ß-ARs and α1-ARs, which are thought to be cardiotoxic and worsen pathological remodeling and function. Concurrently, the failing heart manifests significant decreases in sympathetic nerve terminal density, decreased cardiac norepinephrine levels, and marked downregulation of ß-AR abundance and signaling. Thus, a state of both feast and famine coexist with respect to the adrenergic state in heart failure. For the failing heart, the hyperadrenergic state is toxic. However, the role of hypoadrenergic mechanisms in the pathophysiology of heart failure is less clear. Cardiotoxic effects are known to arise from the ß1-AR subtype, and use of ß-AR blockers is a cornerstone of current heart failure therapy. However, cardioprotective effects arise from the ß2-AR subtype that counteract hyperactive ß1-AR signaling, but unfortunately, ß2-AR cardioprotective signaling in heart failure is inhibited by ß-AR blocker therapy. In contrast to current dogma, recent research shows ß1-AR signaling can also be cardioprotective. Moreover, for some forms of heart failure, ß2-AR signaling is cardiotoxic. Thus for both ß-AR subtypes, there is a balance between cardiotoxic versus cardioprotective effects. In heart failure, stimulation of α1-ARs is widely thought to be cardiotoxic. However, also contrary to current dogma, recent research shows that α1-AR signaling is cardioprotective. Taken together, recent research identifies cardioprotective signaling arising from ß1-AR, ß2-AR, and α1-ARs. A goal for future therapies will to harness the protective effects of AR signaling while minimizing cardiotoxic effects. The trajectory of heart failure therapy changed radically from the previous and intuitive use of sympathetic agonists, which unfortunately resulted in greater mortality, to the current use of ß-AR blockers, which initially seemed counterintuitive. As a cautionary note, if the slow adoption of beta-blocker therapy in heart failure is any guide, then new treatment strategies, especially counterintuitive therapies involving stimulating ß-AR and α1-AR signaling, may take considerable time to develop and gain acceptance.
Assuntos
Agonistas Adrenérgicos beta/uso terapêutico , Antagonistas Adrenérgicos beta/uso terapêutico , Cardiotônicos/uso terapêutico , Insuficiência Cardíaca/metabolismo , Transdução de Sinais , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Cardiotônicos/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Humanos , Receptores Adrenérgicos beta/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiopatologiaRESUMO
After myocardial infarction, a poorly contracting nonischemic border zone forms adjacent to the infarct. The cause of border zone dysfunction is unclear. The goal of this study was to determine the myofilament mechanisms involved in postinfarction border zone dysfunction. Two weeks after anteroapical infarction of sheep hearts, we studied in vitro isometric and isotonic contractions of demembranated myocardium from the infarct border zone and a zone remote from the infarct. Maximal force development (Fmax) of the border zone myocardium was reduced by 31 ± 2% versus the remote zone myocardium (n = 6/group, P < 0.0001). Decreased border zone Fmax was not due to a reduced content of contractile material, as assessed histologically, and from myosin content. Furthermore, decreased border zone Fmax did not involve altered cross-bridge kinetics, as assessed by muscle shortening velocity and force development kinetics. Decreased border zone Fmax was associated with decreased cross-bridge formation, as assessed from muscle stiffness in the absence of ATP where cross-bridge formation should be maximized (rigor stiffness was reduced 34 ± 6%, n = 5, P = 0.011 vs. the remote zone). Furthermore, the border zone myocardium had significantly reduced phosphorylation of myosin essential light chain (ELC; 41 ± 10%, n = 4, P < 0.05). However, for animals treated with doxycycline, an inhibitor of matrix metalloproteinases, rigor stiffness and ELC phosphorylation were not reduced in the border zone myocardium, suggesting that doxycycline had a protective effect. In conclusion, myofilament dysfunction contributes to postinfarction border zone dysfunction, myofilament dysfunction involves impaired cross-bridge formation and decreased ELC phosphorylation, and matrix metalloproteinase inhibition may be beneficial for limiting postinfarct border zone dysfunction.
Assuntos
Contração Miocárdica , Infarto do Miocárdio/fisiopatologia , Miofibrilas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Doxiciclina/farmacologia , Masculino , Inibidores de Metaloproteinases de Matriz/farmacologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miofibrilas/efeitos dos fármacos , Cadeias Leves de Miosina/metabolismo , Fosforilação , OvinosRESUMO
α1-Adrenergic receptors (α1-ARs) elicit a negative inotropic effect (NIE) in the mouse right ventricular (RV) myocardium but a positive inotropic effect (PIE) in the left ventricular (LV) myocardium. Effects on myofilament Ca(2+) sensitivity play a role, but effects on Ca(2+) handling could also contribute. We monitored the effects of α1-AR stimulation on contraction and Ca(2+) transients using single myocytes isolated from the RV or LV. Interestingly, for both the RV and LV, we found heterogeneous myocyte inotropic responses. α1-ARs mediated either a PIE or NIE, although RV myocytes had a greater proportion of cells manifesting a NIE (68%) compared with LV myocytes (36%). Stimulation of a single α1-AR subtype (α1A-ARs) with a subtype-selective agonist also elicited heterogeneous inotropic responses, suggesting that the heterogeneity arose from events downstream of the α1A-AR subtype. For RV and LV myocytes, an α1-AR-mediated PIE was associated with an increased Ca(2+) transient and a NIE was associated with a decreased Ca(2+) transient, suggesting a key role for Ca(2+) handling. For RV and LV myocytes, α1-AR-mediated decreases in the Ca(2+) transient were associated with increased Ca(2+) export from the cell and decreased Ca(2+) content of the sarcoplasmic reticulum. In contrast, for myocytes with α1-AR-induced increased Ca(2+) transients, sarcoplasmic reticulum Ca(2+) content was not increased, suggesting that other mechanisms contributed to the increased Ca(2+) transients. This study demonstrates the marked heterogeneity of LV and RV cellular inotropic responses to stimulation of α1-ARs and reveals a new aspect of biological heterogeneity among myocytes in the regulation of contraction.
Assuntos
Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Ventrículos do Coração/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Receptores Adrenérgicos alfa 1/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Ventrículos do Coração/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miofibrilas/metabolismo , Retículo Sarcoplasmático/metabolismoRESUMO
To study human traumatic brain injury (TBI) mechanics, a realistic surrogate must be developed for testing in impact experiments. In this data brief, materials used to simulate brain tissue and skull are characterized for application in a full-scale human head phantom. Polyacrylamide hydrogels are implemented as tissue scaffolds and tissue mimics because they are bioinert and tunable. These properties make them ideal for use as brain tissue in studies that simulate head impacts. The objective is to modify hydrogel formulations to have minimal swelling and optical clarity while maintaining properties that mimic brain tissue, such as density, viscoelastic properties, and rheological properties. Secondly, polylactic acid (PLA) polymers are 3D printed to create biomimetic skulls to enclose the hydrogel brain tissue mimic or brain phantom. PLA samples are printed and tested to determine their mechanical strength with the intention of roughly matching human skull properties. Hydrogel data was obtained with an oscillatory rheometer, while PLA samples were tested using a mechanical tester with a 3-point bend setup. The present data brief highlights several hydrogel formulations and compares them to identify the benefits of each formula and reports mechanical values of 3D printed PLA samples with 100% grid infill patterns applied in a skull model.
RESUMO
Global activation of MAP kinases has been reported in both human and experimental heart failure. Chronic remodeling of the surviving ventricular wall after myocardial infarction (MI) involves both myocyte loss and fibrosis; we hypothesized that this cardiomyopathy involves differential shifts in pro- and anti-apoptotic MAP kinase signaling in cardiac myocyte (CM) and non-myocyte. Cardiomyopathy after coronary artery ligation in mice was characterized by echocardiography, ex vivo Langendorff preparation, histologic analysis and measurements of apoptosis. Phosphorylation (activation) of signaling molecules was analyzed by Western blot, ELISA and immunohistochemistry. Post-MI remodeling involved dramatic changes in the phosphorylation of both stress-activated MAP (SAP) kinase p38 as well as ERK, a known mediator of cell survival, but not of SAP kinase JNK or the anti-apoptotic mediator of PI3K, Akt. Phosphorylation of p38 rose early after MI in the infarct, whereas a more gradual rise in the remote myocardium accompanied a rise in apoptosis in that region. In both areas, ERK phosphorylation was lowest early after MI and rose steadily thereafter, though infarct phosphorylation was consistently higher. Immunostaining of p-ERK localized to fibrotic areas populated primarily by non-myocytes, whereas staining of p38 phosphorylation was stronger in areas of progressive CM apoptosis. Relative segregation of CMs and non-myocytes in different regions of the post-MI myocardium revealed signaling patterns that imply cell type-specific changes in pro- and anti-apoptotic MAP kinase signaling. Prevention of myocyte loss and of LV remodeling after MI may therefore require cell type-specific manipulation of p38 and ERK activation.
Assuntos
Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Transdução de Sinais/fisiologia , Animais , Apoptose , Western Blotting , Cardiomiopatias/metabolismo , Células Cultivadas , Ecocardiografia , Ensaio de Imunoadsorção Enzimática , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
Right ventricular (RV) failure is a serious common clinical problem that is poorly understood. Therefore, for failing and nonfailing hearts, we examined the distinctive inotropic responses induced in the RV myocardium after the stimulation of alpha(1)-adrenergic receptors (ARs). In RV trabeculae from nonfailing mouse hearts, alpha(1)-ARs induced a negative inotropic response, consistent with our previous study. In marked contrast, in RV trabeculae from failing hearts, 12 wk after coronary artery ligation, alpha(1)-ARs induced a positive inotropic response. Mechanistically, experiments with skinned trabeculae showed that alpha(1)-ARs decreased myofilament Ca(2+) sensitivity in the nonfailing RV myocardium, whereas alpha(1)-ARs increased Ca(2+) sensitivity in heart failure. This suggests that a switch in the Ca(2+) sensitivity response to alpha(1)-AR stimulation explained the switch in the RV alpha(1)-AR inotropic response in heart failure. Myosin light chain kinase (MLCK) can increase myofilament Ca(2+) sensitivity, and the smooth muscle isoform (smMLCK), which is also present in cardiomyocytes, was more abundant in the RV myocardium from failing versus nonfailing hearts. Moreover, the MLCK inhibitor ML-9 prevented the switch of the RV myocardium to a positive alpha(1)-AR inotropic response in heart failure. In the left ventricular myocardium, in contrast, alpha(1)-AR inotropic responses were not different in failing versus nonfailing hearts, and smMLCK abundance was not increased in heart failure. In relation to human disease, we found that smMLCK mRNA and protein levels were increased in RVs from failing human hearts. We conclude that the RV inotropic response to alpha(1)-ARs is switched from negative to positive in heart failure, through a pathway involving increased myofilament Ca(2+) sensitivity. Since alpha(1)-AR agonist catecholamines are elevated in heart failure, increased alpha(1)-AR inotropic responses in the RV myocardium may be adaptive in heart failure by helping the failing RV respond to increased pulmonary pressures.