RESUMO
A novel digital receiver architecture for coherent heterodyne-detected optical signals is presented. It demonstrates the application of bandpass sampling in an optical communications context, to overcome the high sampling rate requirement of conventional receivers (more than twice the signal bandwidth). The concept is targeted for WDM coherent optical access networks, where applying heterodyne detection constitutes a promising approach to reducing optical hardware complexity. The validity of the concept is experimentally assessed in a 76 km WDM-PON scenario, where the developed DSP achieves a 50% ADC rate reduction with penalty-free operation.
RESUMO
A 20 Gb/s quaternary TDM-PAM passive optical network with chirped and non-linear optical transmitters is experimentally demonstrated. The migration from legacy TDM-PONs and the implications of using available 10 Gb/s components are analyzed. We show that a loss budget of 27.3 dB is compatible together with a packet power ratio of 10 dB between loud and soft optical network units.
RESUMO
Optical quadrature amplitude modulation (QAM) is experimentally demonstrated with a low-complexity modulator based on a semiconductor optical amplifier and electroabsorption modulator. Flexible amplitude/phase format transmission is achieved. The applicability of octary QAM for coherent optical access networks with sustainable 3 Gb/s per-user bandwidth is investigated for a long reach of 100 km, and its compatibility with a potentially high split is verified.