Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Phys Med Biol ; 67(10)2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35472757

RESUMO

Objective.Using Monte-Carlo simulations, we evaluated the physical performance of a hypothetical state-of-the-art clinical PET scanner with adaptive axial field-of-view (AFOV) based on the validated GATE model of the Siemens Biograph VisionTMPET/CT scanner.Approach.Vision consists of 16 compact PET rings, each consisting of 152 mini-blocks of 5 × 5 Lutetium Oxyorthosilicate crystals (3.2 × 3.2 × 20 mm3). The Vision 25.6 cm AFOV was extended by adopting (i) a sparse mini-block ring (SBR) configuration of 49.6 cm AFOV, with all mini-block rings interleaved with 16 mm axial gaps, or (ii) a sparse mini-block checkerboard (SCB) configuration of 51.2 cm AFOV, with all mini-blocks interleaved with gaps of 16 mm (transaxial) × 16 mm (axial) width in checkerboard pattern. For sparse configurations, a 'limited' continuous bed motion (limited-CBM) acquisition was employed to extend AFOVs by 2.9 cm. Spatial resolution, sensitivity, image quality (IQ), NECR and scatter fraction were assessed per NEMA NU2-2012.Main Results.All IQ phantom spheres were distinguishable with all configurations. SBR and SCB percent contrast recovery (% CR) and background variability (% BV) were similar (p-value > 0.05). Compared to Vision, SBR and SCB %CRs were similar (p-values > 0.05). However, SBR and SCB %BVs were deteriorated by 30% and 26% respectively (p-values < 0.05). SBR, SCB and Vision exhibited system sensitivities of 16.6, 16.8, and 15.8 kcps MBq-1, NECRs of 311 kcps @35 kBq cc-1, 266 kcps @25.8 kBq cc-1, and 260 kcps @27.8 kBq cc-1, and scatter fractions of 31.2%, 32.4%, and 32.6%, respectively. SBR and SCB exhibited a smoother sensitivity reduction and noise enhancement rate from AFOV center to its edges. SBR and SCB attained comparable spatial resolution in all directions (p-value > 0.05), yet, up to 1.5 mm worse than Vision (p-values < 0.05).Significance.The proposed sparse configurations may offer a clinically adoptable solution for cost-effective adaptive AFOV PET with either highly-sensitive or long-AFOV acquisitions.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Método de Monte Carlo , Imagens de Fantasmas , Desempenho Físico Funcional , Tomografia por Emissão de Pósitrons/métodos
2.
Phys Med Biol ; 51(19): 4923-50, 2006 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16985279

RESUMO

The point spread function (PSF) of a pinhole collimator plays an important role in determining the resolution and characterizing the sensitivity of the accepted photons from a given point in the image space. The focus of this paper is to derive an analytical expression for the PSF of two different types of focusing pinhole collimators that are based on (1) right-circular double cones and (2) oblique-circular double cones. Conventionally, focusing pinhole collimators used in multi-pinhole SPECT were designed using right-circular double cones, as they were easier to fabricate. In this work, a novel focusing collimator consisting of oblique-circular double cones was designed and its properties were studied in detail with respect to right-circular double-cone based collimators. The main advantage of determining the PSF is the fact that they can be used to accurately model the PSF during the reconstruction, thereby improving the resolution of the reconstructed image. The PSF of the focusing collimators based on oblique-circular cones were found to be almost shift invariant for low and medium energy photons (below 200 keV). This property is very advantageous as algorithms such as slice-by-slice reconstruction can be used for resolution recovery thereby drastically reducing the reconstruction time. However, the PSF of focusing oblique-circular double cones (FOCDC) for higher energy photons were found to be asymmetric and hence need to be modelled more accurately during the reconstruction. On the other hand, the PSF for the right-circular cone based collimators were found to be asymmetric for all energy levels. However, due to the smaller acceptance angle used, the number of penetration photons was found to be far less than that observed for oblique-circular cones. This results in a smaller PSF making right-circular cone based collimators preferable for high-resolution small animal imaging, especially where very small pinhole diameters are used. The analytically derived PSF for both collimators were validated using a ray-tracing based Monte Carlo approach and found to agree well with a mean square error of less than 1%.


Assuntos
Radioterapia/métodos , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Algoritmos , Elétrons , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Modelos Estatísticos , Modelos Teóricos , Método de Monte Carlo , Fótons , Espalhamento de Radiação , Sensibilidade e Especificidade
3.
Phys Med Biol ; 50(19): 4609-24, 2005 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16177493

RESUMO

This study simulates a multi-pinhole single-photon emission computed tomography (SPECT) system using the Monte Carlo method, and investigates different multi-pinhole designs for quantitative mouse brain imaging. Prior approaches investigating multi-pinhole SPECT were not often optimal, as the number and geometrical arrangement of pinholes were usually chosen empirically. The present study seeks to optimize the number of pinholes for a given pinhole arrangement, and also for the specific application of quantitative neuroreceptor binding in the mouse brain. An analytical Monte Carlo simulation based method was used to generate the projection data for various count levels. A three-dimensional ordered-subsets expectation-maximization algorithm was developed and used to reconstruct the images, incorporating a realistic pinhole model for resolution recovery and noise reduction. Although artefacts arising from overlapping projections could be a major problem in multi-pinhole reconstruction, the cold-rod phantom study showed minimal loss of spatial resolution in multi-pinhole systems, compared to a single-pinhole system with the same pinhole diameter. A quantitative study of neuroreceptor binding sites using a mouse brain phantom and low activity (37 MBq) showed that the multi-pinhole system outperformed the single-pinhole system by maintaining the mean and lowering the variance in the measured uptake ratio. Multi-pinhole collimation can be used to reduce the injected dose and thereby reduce the radiation exposure to the animal. Results also suggest that the nine-pinhole configuration shown in this paper is a good choice for mouse brain imaging.


Assuntos
Algoritmos , Encéfalo/diagnóstico por imagem , Método de Monte Carlo , Tomografia Computadorizada de Emissão de Fóton Único , Animais , Camundongos , Imagens de Fantasmas , Radiografia
4.
IEEE Trans Med Imaging ; 32(2): 237-46, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23014717

RESUMO

Positron emission tomographs (PETs) are currently almost exclusively designed as hybrid systems. The current standard is the PET/CT combination, while prototype PET/MRI systems are being studied by several research groups. One problem in these systems is that the transaxial field-of-view of the second system is smaller than that of the PET camera and does not provide complete attenuation data. Because this second system provides the image for PET attenuation and scatter correction, the smaller FOV causes truncation of the attenuation map, producing bias in the attenuation corrected activity image. In this paper, we propose a maximum-a-posteriori algorithm for estimating the missing part of the attenuation map from the PET emission data. The method is evaluated on five artificially truncated 18F-FDGPET/CT studies, where it reduced the error on the reconstructed PET activities from 20% to less than 7%. The results on a PET/MRI patient study with 18F-FDG are presented as well.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
IEEE Trans Med Imaging ; 31(12): 2224-33, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22899574

RESUMO

In positron emission tomography (PET) and single photon emission tomography (SPECT), attenuation correction is necessary for quantitative reconstruction of the tracer distribution. Previously, several attempts have been made to estimate the attenuation coefficients from emission data only. These attempts had limited success, because the problem does not have a unique solution, and severe and persistent "cross-talk" between the estimated activity and attenuation distributions was observed. In this paper, we show that the availability of time-of-flight (TOF) information eliminates the cross-talk problem by destroying symmetries in the associated Fisher information matrix. We propose a maximum-a-posteriori reconstruction algorithm for jointly estimating the attenuation and activity distributions from TOF PET data. The performance of the algorithm is studied with 2-D simulations, and further illustrated with phantom experiments and with a patient scan. The estimated attenuation image is robust to noise, and does not suffer from the cross-talk that was observed in non-TOF PET. However, some constraining is still mandatory, because the TOF data determine the attenuation sinogram only up to a constant offset.


Assuntos
Algoritmos , Tomografia por Emissão de Pósitrons/métodos , Simulação por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Tórax/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA