RESUMO
Post-translational modifications (PTMs) greatly expand the structures and functions of proteins in nature1,2. Although synthetic protein functionalization strategies allow mimicry of PTMs3,4, as well as formation of unnatural protein variants with diverse potential functions, including drug carrying5, tracking, imaging6 and partner crosslinking7, the range of functional groups that can be introduced remains limited. Here we describe the visible-light-driven installation of side chains at dehydroalanine residues in proteins through the formation of carbon-centred radicals that allow C-C bond formation in water. Control of the reaction redox allows site-selective modification with good conversions and reduced protein damage. In situ generation of boronic acid catechol ester derivatives generates RH2C⢠radicals that form the native (ß-CH2-γ-CH2) linkage of natural residues and PTMs, whereas in situ potentiation of pyridylsulfonyl derivatives by Fe(II) generates RF2C⢠radicals that form equivalent ß-CH2-γ-CF2 linkages bearing difluoromethylene labels. These reactions are chemically tolerant and incorporate a wide range of functionalities (more than 50 unique residues/side chains) into diverse protein scaffolds and sites. Initiation can be applied chemoselectively in the presence of sensitive groups in the radical precursors, enabling installation of previously incompatible side chains. The resulting protein function and reactivity are used to install radical precursors for homolytic on-protein radical generation; to study enzyme function with natural, unnatural and CF2-labelled post-translationally modified protein substrates via simultaneous sensing of both chemo- and stereoselectivity; and to create generalized 'alkylator proteins' with a spectrum of heterolytic covalent-bond-forming activity (that is, reacting diversely with small molecules at one extreme or selectively with protein targets through good mimicry at the other). Post-translational access to such reactions and chemical groups on proteins could be useful in both revealing and creating protein function.
Assuntos
Luz , Processamento de Proteína Pós-Traducional/efeitos da radiação , Proteínas/química , Proteínas/metabolismo , Alanina/análogos & derivados , Alanina/química , Alanina/metabolismo , Sítios de Ligação , Carbono/química , Carbono/metabolismo , Enzimas/química , Enzimas/metabolismo , Ésteres/síntese química , Ésteres/química , Células HeLa , Humanos , Hidrocarbonetos Fluorados/química , Hidrocarbonetos Fluorados/metabolismo , Indicadores e Reagentes/química , Oxirredução , Processos Fotoquímicos/efeitos da radiação , Domínios e Motivos de Interação entre ProteínasRESUMO
HSP27 is a human molecular chaperone that forms large, dynamic oligomers and functions in many aspects of cellular homeostasis. Mutations in HSP27 cause Charcot-Marie-Tooth (CMT) disease, the most common inherited disorder of the peripheral nervous system. A particularly severe form of CMT disease is triggered by the P182L mutation in the highly conserved IxI/V motif of the disordered C-terminal region, which interacts weakly with the structured core domain of HSP27. Here, we observed that the P182L mutation disrupts the chaperone activity and significantly increases the size of HSP27 oligomers formed in vivo, including in motor neurons differentiated from CMT patient-derived stem cells. Using NMR spectroscopy, we determined that the P182L mutation decreases the affinity of the HSP27 IxI/V motif for its own core domain, leaving this binding site more accessible for other IxI/V-containing proteins. We identified multiple IxI/V-bearing proteins that bind with higher affinity to the P182L variant due to the increased availability of the IxI/V-binding site. Our results provide a mechanistic basis for the impact of the P182L mutation on HSP27 and suggest that the IxI/V motif plays an important, regulatory role in modulating protein-protein interactions.
Assuntos
Doença de Charcot-Marie-Tooth/genética , Proteínas de Choque Térmico/química , Chaperonas Moleculares/química , Adulto , Sítios de Ligação , Células Cultivadas , Células HeLa , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Simulação de Dinâmica Molecular , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Mutação de Sentido Incorreto , Ligação Proteica , Multimerização ProteicaRESUMO
Interactions between the SARS-CoV-2 Spike protein and ACE2 are one of the most scrutinized reactions of our time. Yet, questions remain as to the impact of glycans on mediating ACE2 dimerization and downstream interactions with Spike. Here, we address these unanswered questions by combining a glycoengineering strategy with high-resolution native mass spectrometry (MS) to investigate the impact of N-glycan occupancy on the assembly of multiple Spike-ACE2 complexes. We confirmed that intact Spike trimers have all 66 N-linked sites occupied. For monomeric ACE2, all seven N-linked glycan sites are occupied to various degrees; six sites have >90% occupancy, while the seventh site (Asn690) is only partially occupied (â¼30%). By resolving the glycoforms on ACE2, we deciphered the influence of each N-glycan on ACE2 dimerization. Unexpectedly, we found that Asn432 plays a role in mediating dimerization, a result confirmed by site-directed mutagenesis. We also found that glycosylated dimeric ACE2 and Spike trimers form complexes with multiple stoichiometries (Spike-ACE2 and Spike2-ACE2) with dissociation constants (Kds) of â¼500 and <100 nM, respectively. Comparing these values indicates that positive cooperativity may drive ACE2 dimers to complex with multiple Spike trimers. Overall, our results show that occupancy has a key regulatory role in mediating interactions between ACE2 dimers and Spike trimers. More generally, since soluble ACE2 (sACE2) retains an intact SARS-CoV-2 interaction site, the importance of glycosylation in ACE2 dimerization and the propensity for Spike and ACE2 to assemble into higher oligomers are molecular details important for developing strategies for neutralizing the virus.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Ligação Proteica , Espectrometria de Massas , PolissacarídeosRESUMO
Boron is absent in proteins, yet is a micronutrient. It possesses unique bonding that could expand biological function including modes of Lewis acidity not available to typical elements of life. Here we show that post-translational Cß-Bγ bond formation provides mild, direct, site-selective access to the minimally sized residue boronoalanine (Bal) in proteins. Precise anchoring of boron within complex biomolecular systems allows dative bond-mediated, site-dependent protein Lewis acid-base-pairing (LABP) by Bal. Dynamic protein-LABP creates tunable inter- and intramolecular ligand-host interactions, while reactive protein-LABP reveals reactively accessible sites through migratory boron-to-oxygen Cß-Oγ covalent bond formation. These modes of dative bonding can also generate de novo function, such as control of thermo- and proteolytic stability in a target protein, or observation of transient structural features via chemical exchange. These results indicate that controlled insertion of boron facilitates stability modulation, structure determination, de novo binding activities and redox-responsive 'mutation'.
Assuntos
Boro/química , Proteínas/química , Alanina/química , Sequência de Aminoácidos , Oxirredução , Ligação Proteica , Processamento de Proteína Pós-Traducional , Relação Estrutura-AtividadeRESUMO
Oligomerization of membrane proteins in response to lipid binding has a critical role in many cell-signalling pathways but is often difficult to define or predict. Here we report the development of a mass spectrometry platform to determine simultaneously the presence of interfacial lipids and oligomeric stability and to uncover how lipids act as key regulators of membrane-protein association. Evaluation of oligomeric strength for a dataset of 125 α-helical oligomeric membrane proteins reveals an absence of interfacial lipids in the mass spectra of 12 membrane proteins with high oligomeric stability. For the bacterial homologue of the eukaryotic biogenic transporters (LeuT, one of the proteins with the lowest oligomeric stability), we found a precise cohort of lipids within the dimer interface. Delipidation, mutation of lipid-binding sites or expression in cardiolipin-deficient Escherichia coli abrogated dimer formation. Molecular dynamics simulation revealed that cardiolipin acts as a bidentate ligand, bridging across subunits. Subsequently, we show that for the Vibrio splendidus sugar transporter SemiSWEET, another protein with low oligomeric stability, cardiolipin shifts the equilibrium from monomer to functional dimer. We hypothesized that lipids are essential for dimerization of the Na+/H+ antiporter NhaA from E. coli, which has the lowest oligomeric strength, but not for the substantially more stable homologous Thermus thermophilus protein NapA. We found that lipid binding is obligatory for dimerization of NhaA, whereas NapA has adapted to form an interface that is stable without lipids. Overall, by correlating interfacial strength with the presence of interfacial lipids, we provide a rationale for understanding the role of lipids in both transient and stable interactions within a range of α-helical membrane proteins, including G-protein-coupled receptors.
Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Lipídeos/química , Lipídeos/farmacologia , Espectrometria de Massas/métodos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Multimerização Proteica/efeitos dos fármacos , Sítios de Ligação/genética , Cardiolipinas/química , Cardiolipinas/metabolismo , Cardiolipinas/farmacologia , Membrana Celular/química , Membrana Celular/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Moritella/química , Estabilidade Proteica/efeitos dos fármacos , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/metabolismo , Termodinâmica , Thermus thermophilus/químicaRESUMO
Cells chemically isolate molecules in compartments to both facilitate and regulate their interactions. In addition to membrane-encapsulated compartments, cells can form proteinaceous and membraneless organelles, including nucleoli, Cajal and PML bodies, and stress granules. The principles that determine when and why these structures form have remained elusive. Here, we demonstrate that the disordered tails of Ddx4, a primary constituent of nuage or germ granules, form phase-separated organelles both in live cells and in vitro. These bodies are stabilized by patterned electrostatic interactions that are highly sensitive to temperature, ionic strength, arginine methylation, and splicing. Sequence determinants are used to identify proteins found in both membraneless organelles and cell adhesion. Moreover, the bodies provide an alternative solvent environment that can concentrate single-stranded DNA but largely exclude double-stranded DNA. We propose that phase separation of disordered proteins containing weakly interacting blocks is a general mechanism for forming regulated, membraneless organelles.
Assuntos
Grânulos Citoplasmáticos/química , RNA Helicases DEAD-box/química , Organelas/química , Transição de Fase , Sequência de Aminoácidos , Núcleo Celular/química , Núcleo Celular/metabolismo , Grânulos Citoplasmáticos/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA/química , DNA/metabolismo , Células HeLa , Humanos , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Metilação , Microscopia Confocal , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Organelas/metabolismo , Concentração Osmolar , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Imagem com Lapso de Tempo , Temperatura de TransiçãoRESUMO
PURPOSE: In chemical exchange saturation transfer imaging, saturation effects between - 2 to - 5 ppm (nuclear Overhauser effects, NOEs) have been shown to exhibit contrast in preclinical stroke models. Our previous work on NOEs in human stroke used an analysis model that combined NOEs and semisolid MT; however their combination might feasibly have reduced sensitivity to changes in NOEs. The aim of this study was to explore the information a 4-pool Bloch-McConnell model provides about the NOE contribution in ischemic stroke, contrasting that with an intentionally approximate 3-pool model. METHODS: MRI data from 12 patients presenting with ischemic stroke were retrospectively analyzed, as well as from six animals induced with an ischemic lesion. Two Bloch-McConnell models (4 pools, and a 3-pool approximation) were compared for their ability to distinguish pathological tissue in acute stroke. The association of NOEs with pH was also explored, using pH phantoms that mimic the intracellular environment of naïve mouse brain. RESULTS: The 4-pool measure of NOEs exhibited a different association with tissue outcome compared to 3-pool approximation in the ischemic core and in tissue that underwent delayed infarction. In the ischemic core, the 4-pool measure was elevated in patient white matter ( 1.20±0.20 ) and in animals ( 1.27±0.20 ). In the naïve brain pH phantoms, significant positive correlation between the NOE and pH was observed. CONCLUSION: Associations of NOEs with tissue pathology were found using the 4-pool metric that were not observed using the 3-pool approximation. The 4-pool model more adequately captured in vivo changes in NOEs and revealed trends depending on tissue pathology in stroke.
Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Animais , Humanos , Isquemia , Imageamento por Ressonância Magnética/métodos , Camundongos , Prótons , Estudos Retrospectivos , Acidente Vascular Cerebral/diagnóstico por imagemRESUMO
Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≥10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity-ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously.
Assuntos
Biodiversidade , Ecossistema , Plantas , Teorema de Bayes , Mudança Climática , Atividades Humanas , HumanosRESUMO
Using electrospray ion beam deposition, we collide the complex molecule Reichardt's dye (C_{41}H_{30}NO^{+}) at low, hyperthermal translational energy (2-50 eV) with a Cu(100) surface and image the outcome at single-molecule level by scanning tunneling microscopy. We observe bond-selective reaction induced by the translational kinetic energy. The collision impulse compresses the molecule and bends specific bonds, prompting them to react selectively. This dynamics drives the system to seek thermally inaccessible reactive pathways, since the compression timescale (subpicosecond) is much shorter than the thermalization timescale (nanosecond), thereby yielding reaction products that are unobtainable thermally.
RESUMO
Previous studies have established that the folding, structure and function of membrane proteins are influenced by their lipid environments and that lipids can bind to specific sites, for example, in potassium channels. Fundamental questions remain however regarding the extent of membrane protein selectivity towards lipids. Here we report a mass spectrometry approach designed to determine the selectivity of lipid binding to membrane protein complexes. We investigate the mechanosensitive channel of large conductance (MscL) from Mycobacterium tuberculosis and aquaporin Z (AqpZ) and the ammonia channel (AmtB) from Escherichia coli, using ion mobility mass spectrometry (IM-MS), which reports gas-phase collision cross-sections. We demonstrate that folded conformations of membrane protein complexes can exist in the gas phase. By resolving lipid-bound states, we then rank bound lipids on the basis of their ability to resist gas phase unfolding and thereby stabilize membrane protein structure. Lipids bind non-selectively and with high avidity to MscL, all imparting comparable stability; however, the highest-ranking lipid is phosphatidylinositol phosphate, in line with its proposed functional role in mechanosensation. AqpZ is also stabilized by many lipids, with cardiolipin imparting the most significant resistance to unfolding. Subsequently, through functional assays we show that cardiolipin modulates AqpZ function. Similar experiments identify AmtB as being highly selective for phosphatidylglycerol, prompting us to obtain an X-ray structure in this lipid membrane-like environment. The 2.3 Å resolution structure, when compared with others obtained without lipid bound, reveals distinct conformational changes that re-position AmtB residues to interact with the lipid bilayer. Our results demonstrate that resistance to unfolding correlates with specific lipid-binding events, enabling a distinction to be made between lipids that merely bind from those that modulate membrane protein structure and/or function. We anticipate that these findings will be important not only for defining the selectivity of membrane proteins towards lipids, but also for understanding the role of lipids in modulating protein function or drug binding.
Assuntos
Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/farmacologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Dobramento de Proteína/efeitos dos fármacos , Amônia/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Aquaporinas/química , Aquaporinas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cardiolipinas/química , Cardiolipinas/metabolismo , Cardiolipinas/farmacologia , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Cristalografia por Raios X , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Canais Iônicos/química , Canais Iônicos/metabolismo , Bicamadas Lipídicas/química , Espectrometria de Massas , Lipídeos de Membrana/química , Modelos Moleculares , Mycobacterium tuberculosis/química , Fosfatidilgliceróis/química , Fosfatidilgliceróis/metabolismo , Fosfatidilgliceróis/farmacologia , Conformação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Desdobramento de Proteína/efeitos dos fármacos , Especificidade por SubstratoRESUMO
Membrane encapsulation is frequently used by the cell to sequester biomolecules and compartmentalize their function. Cells also concentrate molecules into phase-separated protein or protein/nucleic acid "membraneless organelles" that regulate a host of biochemical processes. Here, we use solution NMR spectroscopy to study phase-separated droplets formed from the intrinsically disordered N-terminal 236 residues of the germ-granule protein Ddx4. We show that the protein within the concentrated phase of phase-separated Ddx4, [Formula: see text], diffuses as a particle of 600-nm hydrodynamic radius dissolved in water. However, NMR spectra reveal sharp resonances with chemical shifts showing [Formula: see text] to be intrinsically disordered. Spin relaxation measurements indicate that the backbone amides of [Formula: see text] have significant mobility, explaining why high-resolution spectra are observed, but motion is reduced compared with an equivalently concentrated nonphase-separating control. Observation of a network of interchain interactions, as established by NOE spectroscopy, shows the importance of Phe and Arg interactions in driving the phase separation of Ddx4, while the salt dependence of both low- and high-concentration regions of phase diagrams establishes an important role for electrostatic interactions. The diffusion of a series of small probes and the compact but disordered 4E binding protein 2 (4E-BP2) protein in [Formula: see text] are explained by an excluded volume effect, similar to that found for globular protein solvents. No changes in structural propensities of 4E-BP2 dissolved in [Formula: see text] are observed, while changes to DNA and RNA molecules have been reported, highlighting the diverse roles that proteinaceous solvents play in dictating the properties of dissolved solutes.
Assuntos
RNA Helicases DEAD-box/química , Hidrodinâmica , Proteínas Intrinsicamente Desordenadas/química , Organelas/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Grânulos Citoplasmáticos/química , Células Germinativas/metabolismo , Células HeLa , Humanos , Espectroscopia de Ressonância MagnéticaRESUMO
BACKGROUND: Guidelines remain unclear over whether patients with early stage oral cancer without overt neck disease benefit from upfront elective neck dissection (END), particularly those with the smallest tumours. METHODS: We conducted a randomised trial of patients with stage T1/T2 N0 disease, who had their mouth tumour resected either with or without END. Data were also collected from a concurrent cohort of patients who had their preferred surgery. Endpoints included overall survival (OS) and disease-free survival (DFS). We conducted a meta-analysis of all six randomised trials. RESULTS: Two hundred fifty randomised and 346 observational cohort patients were studied (27 hospitals). Occult neck disease was found in 19.1% (T1) and 34.7% (T2) patients respectively. Five-year intention-to-treat hazard ratios (HR) were: OS HR = 0.71 (p = 0.18), and DFS HR = 0.66 (p = 0.04). Corresponding per-protocol results were: OS HR = 0.59 (p = 0.054), and DFS HR = 0.56 (p = 0.007). END was effective for small tumours. END patients experienced more facial/neck nerve damage; QoL was largely unaffected. The observational cohort supported the randomised findings. The meta-analysis produced HR OS 0.64 and DFS 0.54 (p < 0.001). CONCLUSION: SEND and the cumulative evidence show that within a generalisable setting oral cancer patients who have an upfront END have a lower risk of death/recurrence, even with small tumours. CLINICAL TRIAL REGISTRATION: NIHR UK Clinical Research Network database ID number: UKCRN 2069 (registered on 17/02/2006), ISCRTN number: 65018995, ClinicalTrials.gov Identifier: NCT00571883.
Assuntos
Carcinoma de Células Escamosas/cirurgia , Procedimentos Cirúrgicos Eletivos/métodos , Neoplasias Bucais/cirurgia , Esvaziamento Cervical/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/patologia , Estudos de Coortes , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/epidemiologia , Neoplasias Bucais/patologia , Pescoço/inervação , Pescoço/fisiopatologia , Pescoço/cirurgia , Estadiamento de Neoplasias , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do TratamentoRESUMO
The incorporation of fluorine can not only significantly facilitate the study of proteins but also potentially modulate their function. Though some biosynthetic methods allow global residue-replacement, post-translational fluorine incorporation would constitute a fast and efficient alternative. Here, we reveal a mild method for direct protein radical trifluoromethylation at native residues as a strategy for symmetric-multifluorine incorporation on mg scales with high recoveries. High selectivity toward tryptophan residues enhanced the utility of this direct trifluoromethylation technique allowing ready study of fluorinated protein constructs using 19F-NMR.
Assuntos
Hemeproteínas/química , Hidrocarbonetos Fluorados/síntese química , Mioglobina/química , Triptofano/química , Animais , Radicais Livres/síntese química , Radicais Livres/química , Cavalos , Hidrocarbonetos Fluorados/química , Estrutura MolecularRESUMO
Proteins are not locked in a single structure but often interconvert with other conformers that are critical for function. When such conformers are sparsely populated and transiently formed they become invisible to routine biophysical methods, however they can be studied in detail by NMR spin-relaxation experiments. Few experiments are available in the NMR toolkit, however, for characterizing the hydrodynamic properties of invisible states. Herein we describe a CPMG-based experiment for measuring translational diffusion constants of invisible states using a pulsed-field gradient approach that exploits methyl 1 H triple-quantum coherences. An example, involving diffusion of a sparsely populated and hence invisible unfolded protein ensemble is presented, without the need for the addition of denaturants that tend to destroy weak interactions that can be involved in stabilizing residual structure in the unfolded state.
Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Difusão , Hidrodinâmica , Conformação Proteica , Teoria QuânticaRESUMO
Temporal stability of ecosystem functioning increases the predictability and reliability of ecosystem services, and understanding the drivers of stability across spatial scales is important for land management and policy decisions. We used species-level abundance data from 62 plant communities across five continents to assess mechanisms of temporal stability across spatial scales. We assessed how asynchrony (i.e. different units responding dissimilarly through time) of species and local communities stabilised metacommunity ecosystem function. Asynchrony of species increased stability of local communities, and asynchrony among local communities enhanced metacommunity stability by a wide range of magnitudes (1-315%); this range was positively correlated with the size of the metacommunity. Additionally, asynchronous responses among local communities were linked with species' populations fluctuating asynchronously across space, perhaps stemming from physical and/or competitive differences among local communities. Accordingly, we suggest spatial heterogeneity should be a major focus for maintaining the stability of ecosystem services at larger spatial scales.
Assuntos
Biodiversidade , Ecossistema , Plantas , Reprodutibilidade dos TestesRESUMO
Methyl groups are powerful probes for the analysis of structure, dynamics and function of supramolecular assemblies, using both solution- and solid-state NMR. Widespread application of the methodology has been limited due to the challenges associated with assigning spectral resonances to specific locations within a biomolecule. Here, we present Methyl Assignment by Graph Matching (MAGMA), for the automatic assignment of methyl resonances. A graph matching protocol examines all possibilities for each resonance in order to determine an exact assignment that includes a complete description of any ambiguity. MAGMA gives 100% accuracy in confident assignments when tested against both synthetic data, and 9 cross-validated examples using both solution- and solid-state NMR data. We show that this remarkable accuracy enables a user to distinguish between alternative protein structures. In a drug discovery application on HSP90, we show the method can rapidly and efficiently distinguish between possible ligand binding modes. By providing an exact and robust solution to methyl resonance assignment, MAGMA can facilitate significantly accelerated studies of supramolecular machines using methyl-based NMR spectroscopy.
Assuntos
Automação , Proteínas de Choque Térmico HSP90/química , Ressonância Magnética Nuclear Biomolecular , Algoritmos , Proteínas de Choque Térmico HSP90/genética , Humanos , Substâncias Macromoleculares/química , Simulação de Dinâmica Molecular , Mutagênese Sítio-DirigidaRESUMO
Virus-like particles (VLPs) are stable protein cages derived from virus coats. They have been used extensively as biomolecular platforms, e.g., nanocarriers or vaccines, but a convenient in situ technique is lacking for tracking functional status. Here, we present a simple way to monitor disassembly of 19F-labeled VLPs derived from bacteriophage Qß by 19F NMR. Analysis of resonances, under a range of conditions, allowed determination not only of the particle as fully assembled but also as disassembled, as well as detection of a degraded state upon digestion by cells. This in turn allowed mutational redesign of disassembly and testing in both bacterial and mammalian systems as a strategy for the creation of putative, targeted-VLP delivery systems.
Assuntos
Flúor/química , Ressonância Magnética Nuclear Biomolecular , Vacinas de Partículas Semelhantes a Vírus/análise , Proteínas Virais/química , Bacteriófago lambda/químicaRESUMO
Mammalian small heat-shock proteins (sHSPs) are molecular chaperones that form polydisperse and dynamic complexes with target proteins, serving as a first line of defense in preventing their aggregation into either amorphous deposits or amyloid fibrils. Their apparently broad target specificity makes sHSPs attractive for investigating ways to tackle disorders of protein aggregation. The two most abundant sHSPs in human tissue are αB-crystallin (ABC) and HSP27; here we present high-resolution structures of their core domains (cABC, cHSP27), each in complex with a segment of their respective C-terminal regions. We find that both truncated proteins dimerize, and although this interface is labile in the case of cABC, in cHSP27 the dimer can be cross-linked by an intermonomer disulfide linkage. Using cHSP27 as a template, we have designed an equivalently locked cABC to enable us to investigate the functional role played by oligomerization, disordered N and C termini, subunit exchange, and variable dimer interfaces in ABC. We have assayed the ability of the different forms of ABC to prevent protein aggregation in vitro. Remarkably, we find that cABC has chaperone activity comparable to that of the full-length protein, even when monomer dissociation is restricted through disulfide linkage. Furthermore, cABC is a potent inhibitor of amyloid fibril formation and, by slowing the rate of its aggregation, effectively reduces the toxicity of amyloid-ß peptide to cells. Overall we present a small chaperone unit together with its atomic coordinates that potentially enables the rational design of more effective chaperones and amyloid inhibitors.