Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Phys Chem Chem Phys ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963293

RESUMO

The optimal design of nanoparticles and nanoalloys arises from the control of their morphology which depends on the synthesis process they undergo. Coalescence is widely accepted as one of the most common synthetic mechanisms, and it occurs both in the liquid and gas phases. Coalescence is when two existing seeds collide and aggregate into a larger object. The resulting aggregate is expected to be far from the equilibrium isomer, i.e. the global minimum of the potential energy surface. While the coalescence of nanoparticles is well studied in a vacuum, sparse computational studies are available for the coalescence in an environment. Using molecular dynamics simulations, we study the coalescence of Au and Pd nanoseeds surrounded by an interacting environment. Comparing the initial stages of the coalescence in a vacuum and the presence of an interacting environment, we show that the formation kinetics strongly depends on the environment and on the size of the nanoalloy. Furthermore, we show that it is possible to tune the resulting nanoalloys' surface chemical composition by changing their surrounding environment.

2.
Faraday Discuss ; 242(0): 326-352, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36278255

RESUMO

A non-trivial interplay rules the relationship between the structure and the chemophysical properties of a nanoparticle. In this context, characterization experiments, molecular dynamics simulations and electronic structure calculations may allow the variables that determine a given property to be pinpointed. Conversely, a rigorous computational characterization of the geometry and chemical ordering of metallic nanoparticles and nanoalloys enables discrimination of which descriptors could be linked with their stability and performance. To this end, we introduce a modular and open-source library, Sapphire, which may classify the structural characteristics of a given nanoparticle through several structural analysis techniques and order parameters. A special focus is geared towards using geometrical descriptors to make predictions on a given nanoparticle's catalytic activity.

3.
Inorg Chem ; 62(11): 4570-4580, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36893373

RESUMO

Ru and Rh nanoparticles catalyze the selective H/D exchange in phosphines using D2 as the deuterium source. The position of the deuterium incorporation is determined by the structure of the P-based substrates, while activity depends on the nature of the metal, the properties of the stabilizing agents, and the type of the substituent on phosphorus. The appropriate catalyst can thus be selected either for the exclusive H/D exchange in aromatic rings or also for alkyl substituents. The selectivity observed in each case provides relevant information on the coordination mode of the ligand. Density functional theory calculations provide insights into the H/D exchange mechanism and reveal a strong influence of the phosphine structure on the selectivity. The isotope exchange proceeds via C-H bond activation at nanoparticle edges. Phosphines with strong coordination through the phosphorus atom such as PPh3 or PPh2Me show preferred deuteration at ortho positions of aromatic rings and at the methyl substituents. This selectivity is observed because the corresponding C-H moieties can interact with the nanoparticle surface while the phosphine is P-coordinated, and the C-H activation results in stable metallacyclic intermediates. For weakly coordinating phosphines such as P(o-tolyl)3, the interaction with the nanoparticle can occur directly through phosphine substituents, and then, other deuteration patterns are observed.

4.
Phys Chem Chem Phys ; 25(6): 4649-4655, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36722856

RESUMO

This first-principles study predicts Pt38 nanoparticles as a catalyst for ethanol reactions. Starting from the adsorption properties, we shed light on the effectiveness of Pt-based nanoclusters as ethanol catalysts. First, the ethanol adsorption on Pt38 shows that the most stable site positions the molecule with the oxygen anchored on top of an edge, whereas CH3 is oriented towards the facet and the molecule remains in trans-symmetry. The ethanol-oxygen adsorbed on top of a facet Pt-atom offers the least stable configuration and the longer Pt-O distance (2.318 Å), while the shorter Pt-O distance (2.237 Å) is found when ethanol is on top of an edge site and the molecule is vertically oriented with Gauche symmetry. A shorter Pt-O distance correlates with higher radial breathing of the nanoparticle after ethanol adsorption. Atomic charge redistribution is calculated on all the considered systems and cases. In any event, we show that the Pt-anchor receives a charge, whilst oxygen-ethanol donates electrons. Orbital analysis shows that Pt-anchors and ethanol-oxygen atoms primarily exchange p-charge. Energy barriers associated with the ethanol bond cleavage show that the C-C bond break is slightly more favourable on Pt38 than on an extended Pt(111). In addition, we find that the cleavage of the hydroxyl O-H ethanol bond shows a higher energy barrier while the removal of an H-atom from the CH3 group is easier. These three facts indicate that the Pt38 nanoparticle enhances ethanol catalysis and hence is a good candidate for ethanol-based fuel cells.

5.
Chemphyschem ; 23(8): e202200035, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35156760

RESUMO

We studied the formation of AuRh nanoalloys (between 20-150 atoms) in the gas phase by means of Molecular Dynamics (MD) calculations, exploring three possible formation processes: one-by-one growth, coalescence, and nanodroplets annealing. As a general trend, we recover a predominance of Rh@Au core-shell ordering over other chemical configurations. We identify new structural motifs with enhanced thermal stabilities. The physical features of those selected systems were studied at the Density Functional Theory (DFT) level, revealing profound correlations between the nanoalloys morphology and properties. Surprisingly, the arrangement of the inner Rh core seems to play a dominant role on nanoclusters' physical features like the HOMO-LUMO gap and magnetic moment. Strong charge separations are recovered within the nanoalloys suggesting the existence of charge-transfer transitions.


Assuntos
Ouro , Magnetismo , Ouro/química
6.
J Chem Phys ; 153(24): 244304, 2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33380086

RESUMO

Silver doping is a valuable route to modulate the structural, electronic, and optical properties of gold clusters. We combine photofragmentation experiments with density functional theory calculations to investigate the relative stability of cationic Ag doped Au clusters, AgAuN-1 + (N ≤ 40). The mass spectra of the clusters after photofragmentation reveal marked drops in the intensity of AgAu8 +, AgAu14 +, and AgAu34 +, indicating a higher relative stability of these sizes. This is confirmed by the calculated AgAuN-1 + (N ≤ 17) dissociation energies peaking for AgAu6 +, AgAu8 +, and AgAu14 +. While the stability of AgAu6 + and AgAu8 + can be explained by the accepted electronic shell model for metal clusters, density of states analysis shows that the geometry plays an important role in the higher relative stability of AgAu14 +. For this size, there is a degeneracy lifting of the 1D shell, which opens a relatively large HOMO-LUMO gap with a subshell-closed 1S21P41P21D6 electronic configuration.

7.
Chemphyschem ; 20(22): 3037-3044, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31386241

RESUMO

We develop a multi-scale approach towards the design of metallic nanoparticles with applications as catalysts in electrochemical reactions. The here discussed method exploits the relationship between nanoparticle architecture and electrochemical activity and is applied to study the catalytic properties of MgO(100)-supported Pt nanosystems undergoing solid-solid and solid-liquid transitions. We observe that a major increment in the activity is associated to the reconstruction of the interface layers, supporting the need for a full geometrical characterisation of such structures also when in-operando.

8.
Phys Chem Chem Phys ; 21(9): 4888-4898, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30484450

RESUMO

Because size and shape can affect the chemo-physical properties of nanoparticles, we extend the use of geometrical descriptors to sequence a genome of monometallic nanoparticles. Selecting the generalised coordination number as a descriptor, the derived geometrical genome distinguishes, catalogues, and counts the variety of adsorption sites available on each isomer with a diameter up to 10 nm, therefore it depends on the nanoparticle size and shape. This procedure allows us to elucidate the effects of morphological diversity within a sample and those of thermally activated structural rearrangements among isomers on nanocatalyst activity. By screening the geometrical genome of archetypal shapes, we forecast Pt stellated twinned nanoparticles, elongated along their five-fold axis and with their shortest diameter of ∼2 nm, as optimal candidates for the electro-reduction of molecular oxygen at room temperature, in agreement with available experimental data.

13.
J Chem Phys ; 148(24): 241739, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29960375

RESUMO

We assess Gaussian process (GP) regression as a technique to model interatomic forces in metal nanoclusters by analyzing the performance of 2-body, 3-body, and many-body kernel functions on a set of 19-atom Ni cluster structures. We find that 2-body GP kernels fail to provide faithful force estimates, despite succeeding in bulk Ni systems. However, both 3- and many-body kernels predict forces within an ∼0.1 eV/Šaverage error even for small training datasets and achieve high accuracy even on out-of-sample, high temperature structures. While training and testing on the same structure always provide satisfactory accuracy, cross-testing on dissimilar structures leads to higher prediction errors, posing an extrapolation problem. This can be cured using heterogeneous training on databases that contain more than one structure, which results in a good trade-off between versatility and overall accuracy. Starting from a 3-body kernel trained this way, we build an efficient non-parametric 3-body force field that allows accurate prediction of structural properties at finite temperatures, following a newly developed scheme [A. Glielmo et al., Phys. Rev. B 95, 214302 (2017)]. We use this to assess the thermal stability of Ni19 nanoclusters at a fractional cost of full ab initio calculations.

14.
Phys Chem Chem Phys ; 19(18): 11057-11063, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28425552

RESUMO

We elucidate the effect of lattice mismatch and chemical ordering on structural transitions in bimetallic nanoalloys of ∼1.5 nm. We show that collective screw dislocation motions happen in small mismatch shell@core systems while strongly mismatched ones favour incomplete outer shell rearrangements. Cooperative transitions can also become hindered when the chemical ordering breaks the geometrical symmetry. Escaping from an unfavourable morphological basin occurs first via re-arrangements of the geometry and then changes towards a better chemical pattern. We observe that the chemical re-ordering mechanisms are independent of system composition and stoichiometry but hinge on the initial and final chemical arrangements.

15.
Nano Lett ; 16(4): 2885-9, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27007172

RESUMO

Elucidating the connection between shape and properties is a challenging but essential task for a rational design of nanoparticles at the atomic level. As a paradigmatic example we investigate how geometry can influence the magnetic properties of nanoparticles, focusing in particular on platinum clusters of 1-2 nm in size. Through first-principle calculations, we have found that the total magnetization depends strongly on the local atomic arrangements. This is due to a contraction of the nearest neighbor distance together with an elongation of the second nearest neighbor distance, resulting in an interatomic partial charge transfer from the atoms lying on the subsurface layer (donors) toward the vertexes (acceptors).

17.
Phys Chem Chem Phys ; 17(42): 28256-61, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25920946

RESUMO

A first-principles investigation of the effect of the doping of golden cages of 32 atoms is proposed. It is shown that Ag and Cu doping affects the geometrical stability of the icosahedral fullerene Au32 cage, where Ag-doping leads to a new, low symmetric, and prolate motif while Cu-doping leads to a lump, incomplete decahedral shape. Most significantly, the HOMO-LUMO gap depends strongly on the cluster geometry while its dependence on the cluster chemical composition seems to be weaker.

18.
Phys Chem Chem Phys ; 17(42): 28364-71, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26054406

RESUMO

A multiscale approach, based on the combination of CALPHAD and molecular dynamics (MD) simulation, is applied in order to understand the melting transition taking place in CuPt nanoalloys. We found that in systems containing up to 1000 atoms, the morphology adopted by the nanoparticles causes the icosahedral CuPt to melt at temperatures 100 K below that of the other morphologies, if the chemical composition contains less than 30% of Pt. We show that the solid-to-liquid transition in CuPt nanoparticles of a radius equal to or greater than 3 nm could be studied using classical tools.


Assuntos
Cobre/química , Nanopartículas , Platina/química , Termodinâmica
19.
J Phys Chem A ; 119(37): 9703-9, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26320360

RESUMO

The effect of dispersion corrections at a range of theory levels on the chemisorption properties of metallic nanoparticles is presented. The site preference for CO on Pt, Au, Pd, and Ir nanoparticles is determined for two geometries, the 38-atom truncated octahedron and the 55-atom icosahedron using density functional theory (DFT). The effects of Grimme's DFT-D2 and DFT-D3 corrections and the optPBE vdW-DF on the site preference of CO is then compared to the "standard" DFT results. Functional behavior is shown to depend not only on the metal but also on the geometry of the nanoparticle with significant effects seen for Pt and Au. There are both qualitative and quantitative differences between the functionals, with significant energetic differences in the chemical ordering of inequivalent sites and adsorption energies varying by up to 1.6 eV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA