RESUMO
Current Influenza virus vaccines primarily induce antibody responses against variable epitopes in hemagglutinin (HA), necessitating frequent updates. However, antibodies against neuraminidase (NA) can also confer protection against influenza, making NA an attractive target for the development of novel vaccines. In this study, we aimed to enhance the immunogenicity of recombinant NA antigens by presenting them multivalently on a nanoparticle carrier. Soluble tetrameric NA antigens of the N1 and N2 subtypes, confirmed to be correctly folded by cryo-electron microscopy structural analysis, were conjugated to Mi3 self-assembling protein nanoparticles using the SpyTag-SpyCatcher system. Immunization of mice with NA-Mi3 nanoparticles induced higher titers of NA-binding and -inhibiting antibodies and improved protection against a lethal challenge compared to unconjugated NA. Additionally, we explored the co-presentation of N1 and N2 antigens on the same Mi3 particles to create a mosaic vaccine candidate. These mosaic nanoparticles elicited antibody titers that were similar or superior to the homotypic nanoparticles and effectively protected against H1N1 and H3N2 challenge viruses. The NA-Mi3 nanoparticles represent a promising vaccine candidate that could complement HA-directed approaches for enhanced potency and broadened protection against influenza A virus.
RESUMO
Asthma is a heterogeneous disorder, evidenced by distinct types of inflammation resulting in different responsiveness to therapy with glucocorticoids (GCs). Tumor necrosis factor α (TNFα) is involved in asthma pathogenesis, but anti-TNFα therapies have not proven broadly effective. The effects of anti-TNFα treatment on steroid resistance have never been assessed. We investigated the role of TNFα blockade using etanercept in the responsiveness to GCs in two ovalbumin-based mouse models of airway hyperinflammation. The first model is GC sensitive and T helper type 2 (Th2)/eosinophil driven, whereas the second reflects GC-insensitive, Th1/neutrophil-predominant asthma subphenotypes. We found that TNFα blockade restores the therapeutic effects of GCs in the GC-insensitive model. An adoptive transfer indicated that the TNFα-induced GC insensitivity occurs in the non-myeloid compartment. Early during airway hyperinflammation, mice are GC insensitive specifically at the level of thymic stromal lymphopoietin (Tslp) transcriptional repression, and this insensitivity is reverted when TNFα is neutralized. Interestingly, TSLP knockout mice displayed increased inflammation in the GC-insensitive model, suggesting a limited therapeutic application of TSLP-neutralizing antibodies in subsets of patients suffering from Th2-mediated asthma. In conclusion, we demonstrate that TNFα reduces the responsiveness to GCs in a mouse model of neutrophilic airway inflammation. Thus antagonizing TNFα may offer a new strategy for therapeutic intervention in GC-resistant asthma.